

1. You are required to determine the radius of gyration k of a triangular plate. Proceed as follows:

- Clamp a pin tightly between the two pieces of wood provided.
- Suspend the triangular plate from a hole nearest the point marked G on the plate (fig. 1). Record the distance of suspension from G as h (in meters).



Figure 1

- Determine the time t for 10 small oscillations of the plate and hence the periodic time T . Repeat the procedure for five other holes and record the corresponding values of h , t and T .
- Plot a graph of $T^2 h$ (ordinates) against h^2 (abscissae).
- Find the slope of the graph in (d) above.
- Given that $T^2 h = \frac{4\pi^2}{g} (k^2 + h^2)$, determine the radius of gyration, k , of the triangular plate.

(20 marks)

2. You are required to determine the refractive index of the transparent liquid labelled S by using a converging lens and a plane mirror. Proceed as follows:

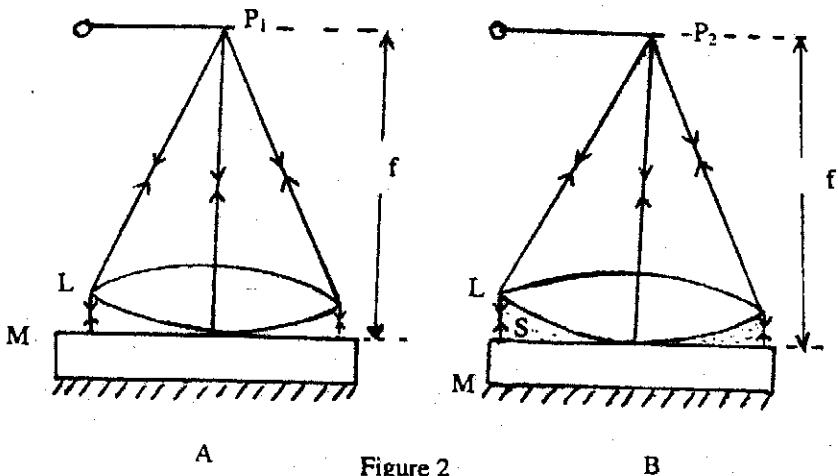


Figure 2

- Place the mirror M and lens L (of known radius of curvature r) provided on a horizontal smooth surface as shown in figure 2A. Fix the pin P_1 provided horizontally in a clamp so that its tip is vertically above the centre of the lens L.
- Place your eye at least 25 cm above the pin then adjust it until at P_1 it has no parallax with its inverted image. Measure the distance f . Repeat this procedure of the no parallax position two more times and each time measure the distance (f).

(c) Then moisten the mirror with a little of the given transparent liquid S so that the space between L and M is filled with the liquid S (figure 2B). Find the new position P_2 of no parallax and measure the distance f' . Repeat this procedure of no parallax position two more times.

(d) Tabulate your results as follows:

	AVERAGE			
$f = P_1 M$ (cm)				
$f' = P_2 M$ (cm)				

(e) Find the focal length, f_L of liquid S given that

$$\frac{1}{f_L} = \frac{1}{f} - \frac{1}{f'}$$

(f) Calculate the refractive index, η_L , of liquid S give that

$$\frac{1}{f_L} = (\eta_L - 1) \frac{1}{r}$$

where r is the radius of curvature of the lens used.

(g) State the sources of error in your experiment. (15 marks).

3. You are required to determine the resistance R of the potentiometer wire. Proceed as follows:

(a) (i) Set up the potentiometer circuit which includes the wire Q, connected between the key, K, and the terminal B as shown in Figure 3. E_1 is accumulator (3V)

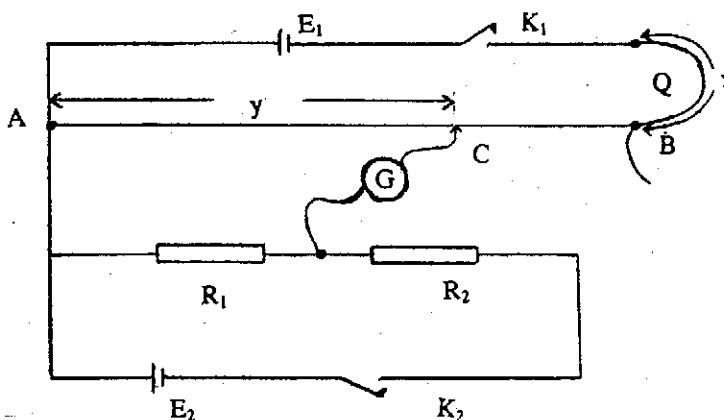


Fig. 3

(ii) Set up the secondary circuit which consists of two resistors, R_1 and R_2 connected in series with the dry cell E_2 as shown in figure 3. $R_1 = 5\Omega$ and $R_2 = 10\Omega$.

(iii) Connect the positive terminal of R_1 to point A and its other terminal to the galvanometer G.

(b) (i) With the length x of wire Q equal to 100cm in the circuit, close the keys K_1 and K_2 and determine the balance length y along AB. Record y in cm and open K_1 and K_2 .

(ii) By reducing the length of the wire Q by 15cm at a time repeat the procedure in (b) (i) for five more values of x . Record the values of x and y in a table.

(iii) Replace the wire x with the standard resistor R_s of 2Ω and determine the balance length y_0 .

(c) y is related to x by the equation $y = a \rho x + aR$.
where a is a constant ρ is the resistance per unit length of wire Q and R is the resistance of the potentiometer wire AB.

- (i) Plot a graph of y against x
- (ii) Determine the value of $x = x_0$ when $y = y_0$.
- (iii) Determine the slope of the graph and the y - intercept.
- (iv) Hence compute the value of R

Given: $\rho = 2 \Omega \text{ cm}^{-1}$

x_0

(d) State any precautions you have taken in this experiment.

(15 marks)