

THE UNITED REPUBLIC OF TANZANIA
NATIONAL EXAMINATIONS COUNCIL OF TANZANIA
CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2A

PHYSICS 2A
ACTUAL PRACTICAL A
(For Both School and Private Candidates)

Time: 2:30 Hours

Year: 2024

Instructions

1. This paper consists of **two (2)** questions. Answer **all** the questions.
2. Each question carries **twenty five (25)** marks.
3. All writings should be in **blue or black ink**, except for diagrams which must be in pencil.
4. Mathematical tables and non-programmable calculators may be used.
5. Communication devices and any unauthorised materials are **not** allowed in the examination room.
6. Write your **Examination Number** on every page of your answer booklet(s).

1. You are given two objects of different masses labelled x and w . The mass of w is 100 g, but the mass of x is unknown. You are required to perform an experiment to determine the unknown mass x using a metre rule, cotton threads and knife edge. Proceed as follows:

(a) Set up the experiment as shown in Figure 1.

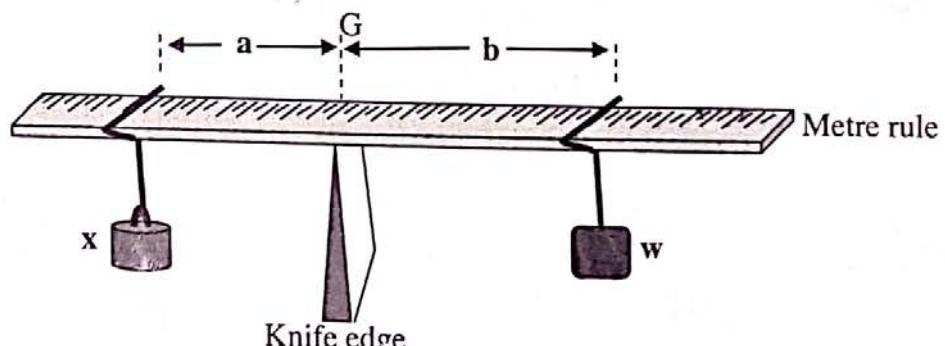


Figure 1

(b) Use a knife edge to find the centre of gravity of the ruler, and then label it as G .
(c) Suspend the unknown mass x on 10 cm mark from G and adjust the position of mass w on the other side of G so that the ruler balances in a horizontal position. Measure and record the distance b (cm).
(d) Repeat the procedure in 1 (c) by varying the value of a equal to 15 cm, 20 cm, 25 cm and 35 cm from G .

Questions

- Tabulate the results for the values of a (cm) and b (cm).
- Plot a graph of a (cm) against b (cm).
- What is the nature of the graph plotted in 1 (ii).
- Determine the slope of the graph plotted in 1 (ii).
- Calculate the mass of object x .
- Which principle is governing this experiment?
- State the principle in 1 (vi).

(25 marks)

2. You are required to determine the e.m.f of the cells and unknown resistance Q . Proceed as follows:

(a) Connect the circuit as shown in Figure 2, setting $R = 1 \Omega$. Close the switch and quickly read the value of current, I in the ammeter.

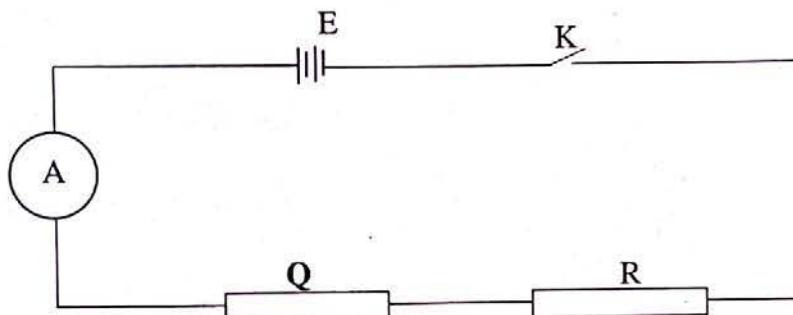


Figure 2

(b) Repeat the procedure in 2 (a) for the values of $R = 2 \Omega, 3 \Omega, 4 \Omega$ and 6Ω .

Questions

- (i) Tabulate your results including the values of $\frac{1}{I}$.
- (ii) Plot a graph of $R (\Omega)$ against $\frac{1}{I} (A^{-1})$.
- (iii) Determine the slope of the graph and the value of R -intercept in 2 (ii).
- (iv) Compute the e.m.f of the cells and the value of Q , if the internal resistance r of a cell is 1Ω .
- (v) What will be the effect on the current, if the value of Q is increasing?

(25 marks)