

Fineract Platform Documentation

Version 1.11.0

Table of Contents

License
Preface
Introduction
Platform for Digital Financial Services
About
Contribute
Downloads
Resources
Deployment
Plugins
HTTPS
Docker Compose
Application Server
Fineract Instance types
Kubernetes
AWS
Google Cloud
Apache Software Foundation Infrastructure
Architecture
History
Resources
System Overview
Functional Overview
Principles
Design Overview
Persistence
Idempotency
Validation
Batch execution and jobs
Loan account locking
Technology
Modules
Introducing Business Date into Fineract - Community version
Reliable event framework
Introducing Advanced payment allocation

Fineract Development Environment

U g1 G b kR R W W W W W W N e

D D R W W W WDNNNDN R R R R e s
D O g 9 0 U1y OO Ul R, WN R R, OO O o o

GPG 66
DOCKET . . . 66
Gradle 66
DD 66
KUbernetes. 67
T000S . 67
Custom MOdULES 69
INtroducCtion. 69
CUSEOIM SEIVICESot 71
Custom BUSINESS STEPSo 74
Custom Loan Transaction PrOCeSSOTSt 76
Custom Batch Jobs 83
Custom Database Migration. 89
Deploying Custom Modules 90
OULIOOK . . . o 91
ReSIIENCe . . . 92
Introduction Resilience. 92
Command. 94
JODS 97
L0aN . i 99
SAVINES . . o 100
SECUTILY . . . 103
O AU . 103
= 0 105
CUCUIMDET . .« . . 105
Unit Testing 109
Integration TeStiNg. 109
Fineract Documentation GUide. 110
File and Folder Layout 110
ASCIIDOC . . o 110
DIQGTAINSo 120
EdItOr . 121
ANTOTA . . . e 122
ReIEaSES. . . . 123
Configuration 123
Release PrOCeSS.o 133

Maintenance Release ProCeSS 148

Publish Release Artifacts
Fineract SDKs
Generate Apache Fineract API Client
Frequently Asked Questions
Glossary
Index
Appendix A: Fineract Application Properties
Tenant Database Properties
Hikari Connection Pool Properties
SSL Properties
Authentication Properties
Tomcat Properties
Kafka Properties
Metrics Properties
AWS Configuration Properties
Resilience4j Properties

Appendix B: Third Party Software

149
151
151
153
154
155
156
156
158
162
163
164
165
168
170
170
175

License

Copyright 2022 Apache Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

Preface

© 2015-2025

Apache Fineract
Website: fineract.apache.org
Email: dev@fineract.apache.org

Version: 1.11.0
Built on: Fri Feb 28 11:45:13 PST 2025

For document authors and changelog, view code history for the fineract-doc directory in github.com/
apache/fineract/.

https://fineract.apache.org
mailto:dev@fineract.apache.org
https://github.com/apache/fineract/
https://github.com/apache/fineract/

Introduction

Platform for Digital Financial Services

See fineract.apache.org

About

See fineract.apache.org/#about

Contribute

See fineract.apache.org/#contribute

Downloads

See fineract.apache.org/#downloads

Resources

See fineract.apache.org/#resources

https://fineract.apache.org
https://fineract.apache.org/#about
https://fineract.apache.org/#contribute
https://fineract.apache.org/#downloads
https://fineract.apache.org/#resources

Deployment

Plugins

Apache Fineract is extensible through plugin JARs (FINERACT-1177; based on
Spring Boot’s support). To launch Fineract with plugin JARs in 1ibs/*.jar, use:

java -Dloader.path=1ibs/ -jar fineract-provider.jar

The Fineract "Docker" container image’s ENTRYPOINT uses this, see our Dockerfile. You could therefore
build your customized Fineract distribution container image with your own Dockerfile using e.g. FROM
apache/fineract:latest and then drop some plugin JARs into /app/libs/.

The WAR distribution does not directly support such plugins, but one could "explode" the WAR and
drop JARs into WEB-INF/1ib; if you know what you are doing, and feel nostalgic of the 1990s still using
WARSs, instead of the recommended modern Spring Boot distribution.

Here is a list of known 3rd-party plugin projects which can be dropped into 1ibs/:

 github.com/vorburger/fineract-pentaho

The reporting module became our first module experiment out of necessity. We are
currently developing a strategy to split up even more internals of Fineract into proper

o modules. Those that have an incompatible license will be hosted in a separate Git
repository (probably on Github under the Mifos organisation). We’ll send out an
announcement as soon as we have more to say on this topic.

HTTPS

Because Apache Fineract deals with customer sensitive personally identifiable information (PII), it
very strongly encourages all developers, implementors and end-users to always only use HTTPS. This is
why it does not run on HTTP even for local development and enforces use of HTTPS.

For this purpose, Fineract includes a built-in default SSL certificate. This cert is intended for
development on localhost, only. It is not trusted by your browser (because it’s self signed).

For production deployments, we recommend running Fineract behind a modern managed cloud native
web proxy which includes SSL termination with automatically rotating SSL certificates, either using
your favourite cloud provider’s respective solution, or locally setting up the equivalent using e.g.
something like NGINX combined with Let’s Encrypt.

Such products, when correctly configured, add the conventional X-Forwarded-For and X-Forwarded-Proto
HTTP headers, which Fineract (or rather the Spring Framework really) correctly respects since

https://issues.apache.org/jira/browse/FINERACT-1177
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-executable-jar-format.html
https://github.com/vorburger/fineract-pentaho
https://letsencrypt.org

FINERACT-914 was fixed.

Alternatively, you could replace the built-in default SSL certificate with one you obtained from a
Certificate Authority. We currently do not document how to do this, because we do not recommend this
approach, as it’s cumbersome to configure and support and less secure than a managed auto rotating
solution.

The Fineract API client supports an insecure mode (FineractClient.Builder#insecure()), and API users
such as mobile apps may expose Settings to let end-users accept the self signed certificate. This should
always be used for testing only, never in production.

Docker Compose

TBD

Application Server

Tomcat

TBD

Undertow

TBD

Jetty

TBD

JBoss

TBD

Weblogic

TBD

Payara

TBD

Fineract Instance types

In cases where Fineract has to deal with high load, it can cause a performance problem for a single
Fineract instance.

https://issues.apache.org/jira/browse/FINERACT-914

To overcome this problem, Fineract instances can be started in different instance types for better
scalability and performance in a multi-instance environment:

Fineract instance types

e Read instance
¢ Write instance

* Batch instance
Each instance type comes with different restrictions. The specifics can be found in the table below.

Table 1. Instance types

Read instance Write instance Batch instance
Using only read-only DB Yes No No
connection
Batch jobs are No No Yes
automatically scheduled
or startable via API
Can receive events No Yes No
(business events, hook
template events)
Can send events No Yes Yes
(business events, hook
template events)
Read APIs supported Yes Yes No
Write APIs supported No Yes No
Batch job APIs No No Yes
supported
Liquibase migration No Yes No

initiated upon startup

Configuring instance types in single instance setup

If Fineract is running as a single instance, then all of the 3 instance types should be enabled. In this
case, there is no need to worry about the configuration, because this is the default behavior.

Read
Write
Batch

v

e —
Fineract DB

Configuring instance types in multi-instance setup

A common solution to dealing with the high load is to deploy 1 write and 1 batch instances and deploy

multiple read instances with read replicas of the Fineract database.

In this case, the write instance and the database will be freed from part of the load, because read

request will use the separated read instance and its read replica database.

Write

Batch

v

e —

Fineract DB

Read

Read

Replica

Read

Read
Replica

Also a common scenario when Close of Business jobs are running and Fineract has to deal with a high
amount of processes.

(In a future release) Fineract (will be) is able to run this CoB jobs in batches.

In multi-instances environment these CoB jobs can run on multiple batch instances and they don’t

have any impact on the performance of the read and write processes.

The best practice is to deploy 1 master batch instance and multiple worker batch instances.

Read Write Batch Batch [o0.] Batch
Manager Worker Worker

Y
e —
Fineract DB

These solutions can be mixed with each other, based on the load of the Fineract deployment.

Configuring instance type via environment variables
The Fineract instance type is configurable via environment variables for the following 3 values:

Table 2. Environment variables

Instance type Environment variable
Read instance FINERACT_READ_MODE_ENABLED
Write instance FINERACT_WRITE_MODE_ENABLED
Batch instance FINERACT_BATCH_MODE_ENABLED

The environment variable values are booleans (true/false). The Fineract instance can be configured in
any combination of these instance types, although if all 3 configurations are false, startup will fail. The
default value for all 3 values is true.

The configured Fineract instance types are easily accessible via a single Spring bean, named
FineractProperties.FineractModeProperties that has 4 methods: isReadMode(), isWriteMode(),
isBatchMode(), isReadOnlyMode()

Liquibase Database Migration

Liquibase data migration is allowed only for write instances

APIs

Read APIs are allowed only for read and write instances

A Fineract instance is ONLY able to serve read API calls when it’s configured as a read or write
instance. In batch instance mode, it won’t serve read API calls.

If it’s a read or write instance, the read APIs will be served.

If it’s a batch instance, the read APIs won’t be served and a proper HTTP status code will be returned.
The distinction whether something is a read API can be decided based on the HTTP request method. If

it’'s a GET, we can assume it’s a read call.

Write APIs are allowed only for write instances

A Fineract instance is ONLY able to serve write API calls when it’s configured as a write instance. In
read or batch instance mode, it won’t serve write API calls.

If the write APIs won’t be served and a proper HTTP status code will be returned.

If it’s a write instance, the write APIs will be served except the ones related to batch jobs.

The distinction whether something is a write API can be decided based on the HTTP request method. If
it’s non-GET, we can assume it’s a write call. Also, the write APIs related to batch jobs (starting/stopping
jobs) will not be served either.

Batch job APIs are allowed only for batch instances

A Fineract instance is ONLY able to serve batch API calls when it’s configured as a batch instance. In
read or write instance mode, it won’t serve batch API calls.

If the batch APIs won’t be served and a proper HTTP status code will be returned.

If it’s a batch instance, the batch APIs will be served.

Batch jobs

Batch job scheduling is allowed only for batch instances

Batch jobs are scheduled only if the Fineract instance running as a batch instance

Read-only instance type restrictions

If the read mode is enabled, but the write mode and batch mode are disabled, Fineract instance runs in
read-only mode.

Events are disabled for read-only instances

When a Fineract instance is running in read-only mode, all event receiving/sending will be disabled.

Read-only tenant connection support

With read separation, there’s a possibility to use read-only database connections for read-only
instances.

If the instance is read-only, the DataSource connection used for the tenant will be read-only.

If the instance is read-only and the configuration for the read-only datasource is not set, the
application startup will fail.

Batch-only instance type restrictions

If the batch mode is enabled, but the read mode and write mode are disabled, Fineract instance runs in
batch-only mode.

Receiving events is disabled for batch-only instances

When a Fineract instance is running as batch, event receiving will be disabled while sending events
will be still possible since the batch jobs are potentially generating business events.

Kubernetes

In a scaled Kubernetes environment where multiple Fineract instances are deployed, doing the
database migrations properly is essential.

Fineract provides a way to run only the Liquibase migrations instead of starting up the whole
application server so that you can easily do the migrations before actually upgrading a Fineract
instance.

The FINERACT_LIQUIBASE_ENABLED flag controls whether Liquibase is enabled or not. For regular
read/write/batch manager/batch worker instances this should be disabled.

There’s a special Spring profile that should be enabled for running Liquibase only. In can be done via
SPRING_PROFILES_ACTIVE environment variable. The profile name is liquibase-only. At the end of the
migration process, the application will exit.

For the instance running the Liquibase migrations, the profile should be activated.

AWS

TBD

Google Cloud

The www.fineract.dev demo server runs on Google Cloud.

The Running Fineract.dev, SRE style presentation given at ApacheCon 2020 has some related
background.

Apache Software Foundation Infrastructure

We can order a server from Apache’s infrastructure team and deploy a demo instance...

TBD

10

https://www.fineract.dev
https://docs.google.com/presentation/d/1-VP4bNkc5kZ3B0yme_vYLiY1qpswnfz8ainnX5fp3l8/

Architecture

This document captures the major architectural decisions in platform. The purpose of the document is
to provide a guide to the overall structure of the platform; where it fits in the overall context of an MIS
solution and its internals so that contributors can more effectively understand how changes that they
are considering can be made, and the consequences of those changes.

The target audience for this report is both system integrators (who will use the document to gain an
understanding of the structure of the platform and its design rationale) and platform contributors who
will use the document to reason about future changes and who will update the document as the system
evolves.

History

The Idea

Fineract was an idea born out of a wish to create and deploy technology that allows the microfinance
industry to scale. The goal is to:

* Produce a gold standard management information system suitable for microfinance operations

Acts as the basis of a platform for microfinance
* Open source, owned and driven by member organisations in the community

* Enabling potential for eco-system of providers located near to MFIs

Timeline

* 2006: Project initiated by Grameen Foundation

» Late 2011: Grameen Foundation handed over full responsibility to open source community.

2012: Mifos X platform started. Previous members of project come together under the name of
Community for Open Source Microfinance (COSM / OpenMF)

2013: COSM / OpenMF officially rebranded to Mifos Initiative and receive US 501c3 status.

2016: Fineract 1.x began incubation at Apache

Resources

* Project URL is github.com/apache/fineract
* Issue tracker is issues.apache.org/jira/projects/FINERACT/summary

* Download from fineract.apache.org/

11

https://github.com/apache/fineract
https://issues.apache.org/jira/projects/FINERACT/summary
http://fineract.apache.org/

System Overview

Third Parties / Industry
A

/Cusmmer \

o

MFI Staff ATM /POS / Card Services

Agent

v

l h 4 h ¥ l

= 7] w
28 g | |2 4 8 g 2 || ez
- Ex
5< < e < 2 = g E £=
&8 8 g & g - g < fa o9
= 5 e 2 g = € @ T =]
SE = E{ o Q @ _§“ = 3%

2 = — . =]

e g % 5 © = 5 S &g
= o 2 iT = 5] g o

- < =

Mifos X Platiorm & API

Figure 1. Platform System Overview

Financial institutions deliver their services to customers through a variety of means today.

As

Customers can call direct into branches (teller model)

Customers can organise into groups (or centers) and agree to meetup at a location and time with FI
staff (traditional microfinance).

An FI might have a public facing information portal that customers can use for variety of reasons
including account management (online banking).

An FI might be integrated into a ATM/POS/Card services network that the customer can use.

An FI might be integrated with a mobile money operator and support mobile money services for
customer (present/future microfinance).

An FI might use third party agents to sell on products/services from other banks/FIs.

illustrated in the above diagram, the various stakeholders leverage business apps to perform

specific customer or FI related actions. The functionality contained in these business apps can be
bundled up and packaged in any way. In the diagram, several of the apps may be combined into one

12

app or any one of the blocks representing an app could be further broken up as needed.

The platform is the core engine of the MIS. It hides a lot of the complexity that exists in the business
and technical domains needed for an MIS in FIs behind a relatively simple API. It is this API that frees
up app developers to innovate and produce apps that can be as general or as bespoke as FIs need them
to be.

Functional Overview

As ALL capabilities of the platform are exposed through an API, The API docs are the best place to view
a detailed breakdown of what the platform does. See online API Documentation.

SR G GRS (T T T T

Mifos X Platiorm & API
] [] [] []
Infrastructure Product Configuration Client Data Portfolio Management
] [] []
User Administration Organisation Modelling GL Account Management

Figure 2. Platform Functional Overview
At a higher level though we see the capabilities fall into the following categories:

* Infrastructure
> Codes
o Extensible Data Tables
o Reporting
» User Administration
o Users
> Roles
o Permissions
* Organisation Modelling
o Offices
o Staff

o Currency

13

Product Configuration
o Charges
o Loan Products

o Deposit Products

Client Data
> Know Your Client (KYC)
 Portfolio Management
o Loan Accounts
o Deposit Accounts
o Client/Groups
* GL Account Management
o Chart of Accounts

o General Ledger

Principles

RESTful API

The platform exposes all its functionality via a practically-RESTful API, that communicates using
JSON.

We use the term practically-RESTful in order to make it clear we are not trying to be fully REST
compliant but still maintain important RESTful attributes like:

« Stateless: platform maintains no conversational or session-based state. The result of this is ability to
scale horizontally with ease.

* Resource-oriented: API is focussed around set of resources using HTTP vocabulary and conventions
e.g GET, PUT, POST, DELETE, HTTP status codes. This results in a simple and consistent API for
clients.

See online API Documentation for more detail.

Multi-tenanted

The Fineract platform has been developed with support for multi-tenancy at the core of its design. This
means that it is just as easy to use the platform for Software-as-a-Service (SaaS) type offerings as it is
for local installations.

The platform uses an approach that isolates an FIs data per database/schema (See Separate Databases
and Shared Database, Separate Schemas).

14

Extensible

Whilst each tenant will have a set of core tables, the platform tables can be extended in different ways
for each tenant through the use of Data tables functionality.

Command Query Separation
We separate commands (that change data) from queries (that read data).

Why? There are numerous reasons for choosing this approach which at present is not an attempt at
full blown CQRS. The main advantages at present are:

« State changing commands are persisted providing an audit of all state changes.

» Used to support a general approach to maker-checker.

» State changing commands use the Object-Oriented paradigm (and hence ORM) whilst querys can
stay in the data paradigm.

Maker-Checker

Also known as four-eyes principal. Enables apps to support a maker-checker style workflow process.
Commands that pass validation will be persisted. Maker-checker can be enabled/disabled at fine-
grained level for any state changing APL

Fine grained access control

A fine grained permission is associated with each API. Administrators have fine grained control over
what roles or users have access to.

Package Structure

The intention is for platform code to be packaged in a vertical slice way (as opposed to layers).
Source code starts from github.com/apache/fineract/tree/develop/fineract-provider/src/main/java/org/
apache/fineract

* accounting

e useradministration

e infrastructure

portfolio
o charge
o client
o fund
> loanaccount

* accounting

15

https://github.com/apache/fineract/tree/develop/fineract-provider/src/main/java/org/apache/fineract
https://github.com/apache/fineract/tree/develop/fineract-provider/src/main/java/org/apache/fineract

Within each vertical slice is some common packaging structure:

* api- XXXApiResource.java - REST api implementation files

* handler - XXXCommandHandler.java - specific handlers invoked
* service - contains read + write services for functional area

* domain - OO concepts for the functional area

 data - Data concepts for the area

* serialization - ability to convert from/to API JSON for functional area

Design Overview

The implementation of the platform code to process commands through handlers
whilst supporting maker-checker and authorisation checks is a little bit convoluted at

o present and is an area pin-pointed for clean up to make it easier to on board new
platform developers. In the mean time below content is used to explain its workings
at present.

Mifos X Platform & API m

]
1. Check Permissions
2. Fetch Data (SQL Query)
3. Covert To JSON response
1

1. Check Permissions

h 4

-

Oracle
Mysql
RDMS

2. Locate Command Handler

Cormerand > 3. Command Handler
€ Uses Domain Services
4. Updated with Model + ORM to perist changes
changes for Audit All changes passed back

5. Covert To JSOM response

Figure 3. CQRS
Taking into account example shown above for the users resource.

* Query: GET /users

16

* HTTPS APIL: retrieveAll method on
org.apache.fineract.useradministration.api.UsersApiResource invoked

» UsersApiResource.retrieveAll: Check user has permission to access this resources data.

» UsersApiResource.retrieveAll: Use 'read service' to fetch all users data (‘read services' execute
simple SQL queries against Database using JDBC)

» UsersApiResource.retrieveAll: Data returned to converted into JSON response
* Command: POST /users (Note: data passed in request body)

« HTTPS API: create method on org.apache.fineract.useradministration.api.UsersApiResource
invoked

UsersApiResource.create

return this.toApiJsonSerializer.serialize(result);

("{userId}")
(summary = "Update a User", description = "When updating a password you
must provide the repeatPassword parameter also.")

(required = true, content = (schema = (implementation =
UsersApiResourceSwagger.PutUsersUserIdRequest.class)))
({
(responseCode = "200", description = "OK", content =
(schema = (implementation = UsersApiResourceSwagger.PutUsersUserIdResponse.class)
)) 1)

({ MediaType.APPLICATION_JSON })
({ MediaType.APPLICATION_JSON })
public String update(("userId") (description = "userId") final
Long userld,
(hidden = true) final String apiRequestBodyAsJson) {

final CommandWrapper commandRequest = new CommandWrapperBuilder() //
.updateUser(userId) //
.withJson(apiRequestBodyAsJson) //
.build();

final CommandProcessingResult result = this.commandsSourceWritePlatformService
.logCommandSource(commandRequest);

Create a CommandWrapper object that represents this create user command and JSON request body. Pass off
responsibility for processing to PortfolioCommandSourceWritePlatformService.logCommandSource

validateIsUpdateAllowed();

17

18

final String json = wrapper.getJson();
final JsonElement parsedCommand = this.fromApiJsonHelper.parse(json);
JsonCommand command = JsonCommand.from(json, parsedCommand, this
.fromApiJsonHelper, wrapper.getEntityName(), wrapper.getEntityId(),
wrapper.getSubentityId(), wrapper.getGroupId(), wrapper.getClientId(),
wrapper.getLoanId(), wrapper.getSavingsId(),
wrapper.getTransactionId(), wrapper.getHref(), wrapper.getProductId(),
wrapper.getCreditBureauld(),
wrapper.getOrganisationCreditBureauld(), wrapper.getJobName(), wrapper
.getLoanExternalld());

return this.processAndLogCommandService.executeCommand(wrapper, command,
isApprovedByChecker);
}

public CommandProcessingResult approveEntry(final Long makerCheckerId) {
final CommandSource commandSourcelInput = validateMakerCheckerTransaction
(makerCheckerlId);
validateIsUpdateAllowed();

final CommandWrapper wrapper = CommandWrapper.fromExistingCommand(makerCheckerId,
commandSourceInput.getActionName(),
commandSourceInput.getEntityName(), commandSourceInput.getResourceld(),
commandSourceInput.getSubResourceld(),
commandSourcelInput.getResourceGetUr1(), commandSourcelnput.getProductId(
), commandSourceInput.getOfficeld(),
commandSourceInput.getGroupId(), commandSourcelnput.getClientId(),
commandSourceInput.getloanId(),
commandSourceInput.getSavingsId(), commandSourcelnput.getTransactionId(),
commandSourceInput.getCreditBureauld(),
commandSourceInput.getOrganisationCreditBureauld(), commandSourcelInput
.getIdempotencyKey(),
commandSourceInput.getlLoanExternalld());
final JsonElement parsedCommand = this.fromApiJsonHelper.parse(
commandSourceInput.getCommandAsJson());
final JsonCommand command = JsonCommand.fromExistingCommand(makerCheckerId,
commandSourceInput.getCommandAsJson(), parsedCommand,
this.fromApilsonHelper, commandSourceInput.getEntityName(),
commandSourceInput.getResourceld(),
commandSourceInput.getSubResourcelId(), commandSourceInput.getGroupId(),
commandSourceInput.qgetClientId(),
commandSourceInput.getloanId(), commandSourcelInput.getSavingsId(),
commandSourceInput.getTransactionId(),
commandSourcelInput.getResourceGetUr1(), commandSourceInput.getProductId(
), commandSourceInput.getCreditBureauId(),
commandSourceInput.getOrganisationCreditBureauld(), commandSourcelInput
.getJobName(),

commandSourceInput.getlLoanExternalld());

return this.processAndLogCommandService.executeCommand(wrapper, command, true);

public Long deleteEntry(final Long makerCheckerId) {

validateMakerCheckerTransaction(makerCheckerId);
validateIsUpdateAllowed();

this.commandSourceRepository.deleteById(makerCheckerId);

return makerCheckerId;

}

private CommandSource validateMakerCheckerTransaction(final Long makerCheckerId) {
final CommandSource commandSource = this.commandSourceRepository.findById
(makerCheckerId)
.orElseThrow(() -> new CommandNotFoundException(makerCheckerId));
if (!commandSource.isMarkedAsAwaitingApproval()) {
throw new CommandNotAwaitingApprovalException(makerCheckerId);
}
AppUser appUser = this.context.authenticatedUser();
String permissionCode = commandSource.getPermissionCode();
appUser.validateHasCheckerPermissionTo(permissionCode);
if (lconfigurationService.isSameMakerCheckerEnabled() && !'appUser
.isCheckerSuperUser()) {
AppUser maker = commandSource.getMaker();
if (maker == null) {
throw new UnsupportedCommandException(permissionCode, "Maker user is
missing.");

Check user has permission for this action. if ok, a) parse the json request body, b) create a J[sonCommand object
to wrap the command details, ¢) use CommandProcessingService to handle command

(name = "executeCommand", fallbackMethod = "fallbackExecuteCommand")
public CommandProcessingResult executeCommand(final CommandWrapper wrapper, final
JsonCommand command,
final boolean isApprovedByChecker) {
// Do not store the idempotency key because of the exception handling
setIdempotencyKeyStoreFlag(false);

Long commandId = (Long) fineractRequestContextHolder.getAttribute

(COMMAND_SOURCE_ID, null);
boolean isRetry = commandId != null;

19

20

boolean isEnclosingTransaction = BatchRequestContextHolder.
isEnclosingTransaction();

CommandSource commandSource = null;

String idempotencyKey;

if (isRetry) {
commandSource = commandSourceService.getCommandSource(commandId);
idempotencyKey = commandSource.getIdempotencyKey();

} else if ((commandId = command.commandId()) != null) { // action on the command

itself

commandSource = commandSourceService.getCommandSource(commandId);
idempotencyKey = commandSource.getIdempotencyKey();

} else {
idempotencyKey = idempotencyKeyResolver.resolve(wrapper);

}

exceptionWhenTheRequestAlreadyProcessed(wrapper, idempotencyKey, isRetry);

AppUser user = context.authenticatedUser(wrapper);
if (commandSource == null) {
if (isEnclosingTransaction) {
commandSource = commandSourceService.getInitialCommandSource(wrapper,
command, user, idempotencyKey);
} else {
commandSource = commandSourceService.saveInitialNewTransaction(wrapper,
command, user, idempotencyKey);
commandId = commandSource.getId();
}
}
if (commandId !'= null) {
storeCommandIdInContext(commandSource); // Store command id as a request
attribute

}

boolean isMakerChecker = configurationDomainService.isMakerCheckerEnabledForTask
(wrapper.taskPermissionName());
if (isApprovedByChecker || (isMakerChecker && user.isCheckerSuperUser())) {
commandSource.markAsChecked(user);

}
setIdempotencyKeyStoreFlag(true);

final CommandProcessingResult result;
try {

result = commandSourceService.processCommand(findCommandHandler (wrapper),

command, commandSource, user, isApprovedByChecker,
isMakerChecker);

} catch (Throwable t) { // NOSONAR

RuntimeException mappable = ErrorHandler.getMappable(t);

ErrorInfo errorInfo = commandSourceService.generateErrorInfo(mappable);

Integer statusCode = errorInfo.getStatusCode();
commandSource.setResultStatusCode(statusCode);
commandSource.setResult(errorInfo.getMessage());
if (statusCode != SC 0OK) {
commandSource.setStatus(ERROR.getValue());

}
if (lisEnclosingTransaction) { // TODO: temporary solution
commandSource = commandSourceService.saveResultNewTransaction
(commandSource);

}

// must not throw any exception; must persist in new transaction as the
current transaction was already

// marked as rollback

publishHookErrorEvent(wrapper, command, errorInfo);

throw mappable;

}

commandSource.setResultStatusCode(SC_0K);
commandSource.updateForAudit(result);
commandSource.setResult(toApiResultJsonSerializer.serializeResult(result));

if a RollbackTransactionAsCommandIsNotApprovedByCheckerException occurs at
this point. The original transaction will of been aborted and we only log an entry for
the command in the audit table setting its status as 'Pending'.

* Check that if maker-checker configuration enabled for this action. If yes and this is not a 'checker’
approving the command - rollback at the end. We rollback at the end in order to test if the
command will pass 'domain validation' which requires commit to database for full check.

* findCommandHandler - Find the correct Handler to process this command.
* Process command using handler (In transactional scope).

* CommandSource object created/updated with all details for logging to
'm_portfolio_command_source' table.

* In update scenario, we check to see if there where really any changes/updates. If so only JSON for
changes is stored in audit log.

Persistence

TBD

Database support

Fineract supports multiple databases:

* MySQL compatible databases (e.g. MariaDB)

21

* PostgreSQL

The platform differentiates between these database types in certain cases when there’s a need to use
some database specific tooling. To do so, the platform examines the JDBC driver used for running the
platform and tries to determine which database is being used.

The currently supported JDBC driver and corresponding mappings can be found below.

JDBC driver class name Resolved database type
org.mariadb.jdbc.Driver MySQL
com.mysql.jdbc.Driver MySQL
org.postgresql.Driver PostgreSQL

The actual code can be found in the DatabaseTypeResolver class.

Tenant database security

The tenant database schema password is stored in the tenant_server_connections table in the tenant
database.

The password and the read only schema password are encrypted using the fineract.tenant.master-
password property.

By default, the database property will be encrypted in the first start from a plane text.

When you want to generate a new encrypted password, you can use the
org.apache.fineract.infrastructure.core.service.database.DatabasePasswordEncryptor class.

Database password encryption usage

java -cp fineract-provider.jar -Dloader.main=org.apache.fineract.infrastructure.core
.service.database.DatabasePasswordEncryptor org.springframework.boot.loader
.PropertieslLauncher <masterPassword> <plainPassword>

For example:

java -cp fineract-provider-0.0.0-48f7e315.jar -Dloader.main=org.apache.fineract
.infrastructure.core.service.database.DatabasePasswordEncryptor org.springframework.boot
.loader.PropertiesLauncher fineract-master-password fineract-tenant-password

The encrypted password: VLwG17vOP/q275ZTku+PNGWnGwW4AmzzNHSNa09Pr67WT5
/NZMpBr9tGYYiYsqwL1eRew2j1703/N1EFbL1XhSA==

Data-access layer

The data-access layer of Fineract is implemented by using JPA (Java Persistence API) with the

22

EclipseLink provider.
Despite the fact that JPA is used quite extensively in the system, there are cases where the performance
is a key element for an operation therefore you can easily find native SQLs as well.

The data-access layer of Fineract is compatible with different databases. Since a lot of the native
queries are using specific database functions, a wrapper class - DatabaseSpecificSQLGenerator - has
been introduced to handle these database specifics. Whenever there’s a need to rely on new database
level functions, make sure to extend this class and implement the specific functions provided by the
database.

Fineract has been developed for 10+ years by the community and unfortunately there are places
where entity relationships are configured with EAGER fetching strategy. This must not confuse anybody.
The long-term goal is to use the LAZY fetching strategy for every single relationship. If you’re about to
introduce a new one, make sure to use LAZY as a fetching strategy, otherwise your PR will be rejected.

Database schema migration

As for every system, the database structure will and need to evolve over time. Fineract is no different.
Originally for Fineract, Flyway was used until Fineract 1.6.x.

After 1.6.x, PostgreSQL support was added to the platform hence there was a need to make the data-
access layer and the schema migration as database independent as possible. Because of that, from
Fineract 1.7.0, Flyway is not used anymore but Liquibase is.

Some of the changesets in the Liquibase changelogs have database specifics into it but they only run
for the relevant databases. This is controller by Liquibase contexts.

The currently available Liquibase contexts are:

* mysql - only set when the database is a MySQL compatible database (e.g. MariaDB)

* postgresql - only set when the database is a PostgreSQL database

» configured Spring active profiles

» tenant_store_db - only set when the database migration runs the Tenant Store upgrade

* tenant_db - only set when the database migration runs the Tenant upgrade

* initial_switch - this is a technical context and should NOT be used
The switch from Flyway (1.6.x) to Liquibase (1.7.x) was planned to be as smooth as possible so there’s
no need for manual work hence the behavior is described as following:

« If the database is empty, Liquibase will create the database schema from scratch

« If the database contains the latest Fineract 1.6.x database structure which was previously migrated
with Flyway. Liquibase will seamlessly upgrade it to the latest version. Note: the Flyway related 2
database tables are left as they are and are not deleted.

« If the database contains an earlier version of the database structure than Fineract 1.6.x. Liquibase

23

will NOT do anything and will fail the application during startup. The proper approach in this
case is to first upgrade your application version to the latest Fineract 1.6.x so that the latest Flyway
changes are executed and then upgrade to the newer Fineract version where Liquibase will
seamlessly take over the database upgrades.

Troubleshooting

1. During upgrade from Fineract 1.5.0 to 1.6.0, Liquibase fails

After dropping the flyway migrations table (schema_version), Liquibase runs its
own migrations which fails (in recreating tables which already exist) because
we are aiming to re-use DB with existing data from Fineract 1.5.0.

Solution: The latest release version (1.6.0) doesn’t have Liquibase at all, it
still runs Flyway migrations. Only the develop branch (later to be 1.7.0) got
switched to Liquibase. Do not pull the develop before upgrading your instance.

Make sure first you upgrade your instance (aka database schema with Fineract 1.6.0).
Then upgrade with the current develop branch. Check if some migration scripts

did not run which led to some operations failing due to slight differences in

schema. Try with running the missing migrations manually.

Note: develop is considered unstable until released.

1. Upgrading database from MySQL 5.7 as advised to Maria DB 10.6, fails. If we
use data from version 18.03.01 it fails to migrate the data. If we use databases
running on 1.5.0 release it completes the startup but the system login fails.

Solution: A database upgrade is separate thing to take care of.

1. We are getting ScehmaUpgradeNeededException: Make sure to upgrade to Fineract
1.6 first and then to a newer version error while upgrading to tag 1.6.

1.6 version shouldn’t include Liquibase. It will only be released after 1.6.

Make sure Liquibase is dropping schema_version table, as there is no Flyway

it is not required. Drop Flyway and use Liquibase for both migrations and
database independence. In case, if you still get errors, you can use git SHA
746¢58936e809b33d68c0596930fcaa7338d5270 and Flyway migration will be done to
the latest.

TENANT_LATEST_FLYWAY_VERSION = 392;
TENANT _LATEST_FLYWAY_SCRIPT_NAME =
"V392__interest_recovery_conf_for_rescedule.sql";
TENANT _LATEST_FLYWAY_SCRIPT_CHECKSUM = 1102395052;

24

Idempotency

Idempotency is the way to make sure your specific action is only executed once.

For example, if you have a button that is supposed to send a repayment, you don’t want to repayment
twice if the user clicks the button twice. Idempotency is a way to make sure that the action is only
executed once.

There are two ways to use idempotency:

* HTTP Request with idempotency key header

» Batch request with batch item header

How it works

The idempotency key with action name and entity name is unique, and identify a specific command in
the system.
If no idempotency key is assigned to the request, the system will generate one for you.

1. User send a request

2. The system checks there are already executed commands with the same idempotency key and action
name and entity name

3. The action based on the result of the check
o If the request is completed the system return with the already generated result
o If not completed, return HTTP 409 response

o If the request is not completed, we process the requests and store the results in the database

Idempotency in HTTP requests

To achieve idempotency in HTTP requests, you can use the HTTP header from fineract.idempotency-
key-header-name configuration variables (default Idemptency-Key). This header is a unique identifier for
the request. If you send the same request twice, the second request will be ignored and the response
from the first request will be returned.

Idempotency in Batch requests

In batch requests, you can set the idempotency key for every batch item, in the batch item header fields.
The header key is from fineract.idempotency-key-header-name configuration variables (default
Idemptency-Key).

Result of the request

* When the request is already executed and completed, the system will return a x-served-from-cache
header with the value true in the response and return the original request body.

25

* When the request is already executed but still not completed, the system will return to HTTP 409
error code

* When the request is not executed, the system runs it normally and stores the result in the date

Validation

Programmatic

Use the DataValidatorBuilder, e.g. like so:

new DataValidatorBuilder().resource("fileUpload")
.reset().parameter("Content-Length").value(contentLength).notBlank()

.integerGreaterThanNumber (0)
.reset().parameter("FormDataContentDisposition").value(fileDetails).notNull()
.throwValidationErrors();

Such code is often encapsulated in *Validator classes (if more than a few lines, and/or reused from
several places; avoid copy/paste), like so:

public class YourThingValidator {

public void validate(YourThing thing) {
new DataValidatorBuilder().resource("yourThing")

.throwValidationErrors();

Declarative
[FINERACT-1229](issues.apache.org/jira/browse/FINERACT-1229) is an open issue about adopting Bean

Validation for declarative instead of programmatic (as above) validation. Contributions welcome!

Batch execution and jobs

Just like any financial system, Fineract also has batch jobs to achieve some processing on the data
that’s stored in the system.

The batch jobs in Fineract are implemented using Spring Batch. In addition to the Spring Batch
ecosystem, the automatic scheduling is done by the Quartz Scheduler but it’s also possible to trigger
batch jobs via regular APIs.

26

https://github.com/apache/fineract/search?q=%22class+DataValidatorBuilder%22
https://github.com/apache/fineract/search?q=Validator
https://issues.apache.org/jira/browse/FINERACT-1229
https://docs.spring.io/spring-batch/docs/current/reference/html/
http://www.quartz-scheduler.org/

Glossary

Job A Job is an object that encapsulates an entire
batch process.

Step A Step is an object that encapsulates an
independent phase of a Job.

Chunk oriented processing Chunk oriented processing refers to reading the
data one at a time and creating 'chunks' that are
written out within a transaction boundary.

Partitioning Partitioning refers to the high-level idea of
dividing your data into so called partitions and
distributing the individual partitions among
Workers. The splitting of data and pushing work
to Workers is done by a Manager.

Remote partitioning Remote partitioning is a specialized partitioning
concept. It refers to the idea of distributing the
partitions among multiple JVMs mainly by using a
messaging middleware.

Manager node The Manager node is one of the objects taking a
huge part when using partitioning. The Manager
node is responsible for dividing the dataset into
partitions and keeping track of all the divided
partitions' Worker execution. When all Workers
nodes are done with their partitions, the Manager
will mark the corresponding Job as completed.

Worker node A Worker node is the other important party in the
context of partitioning. The Worker node is the
one executing the work needed for a single
partition.

Batch jobs in Fineract
Types of jobs
The jobs in Fineract can be divided into 2 categories:

* Normal batch jobs

 Partitionable batch jobs

Most of the jobs are normal batch jobs with limited scalability because Fineract is still passing through
the evolution on making most of them capable to process a high-volume of data.

27

List of jobs

Job name Active by default Partitionable Description
LOAN_CLOSE_OF_BUSIN No Yes TBD
ESS

Batch job execution
State management

State management for the batch jobs is done by the Spring Batch provided state management. The data
model consists of the following database structure:

D BATCH_STEP_EXECUTION _CONTEXT v
STEP_EXECUTION_ID BIGINT{20)
» SHORT_CONTEXT VARCHAR(250C)

> BERIALIZED CONTEXT TEXT | BATCH_JOB_INSTANCE v

» JOB_INSTANCE_ID BIGINT{20)
> VERSION BIGINT(20)
5 JOB_MAME VARCHAR(100)
2 JOB_KEY VARCHAR(32)
| BATCH_STEP_EXECUTION v >
STEP_EXECUTION_ID BIGINT(20) +
> VERSION BIGINT{20) l
» STEP _MNAME VARCHAR([100) *
4 JOB_EXECUTION_ID BIGINT{20) "] BATCH_JOB_EXECUTION ¥
» START_TIME DATETIME JOB_EXECUTION_ID BIGINT{20) | BATCH_JOB_EXECUTION_PARAMS ¥
3 END_TIME DATETIME » VERSION BIGINT(20) » JOB_EXECUTION_ID BIGINT(20)
: BTATUS VARCHAR{10) & JOB_INSTANCE_ID BIGINT{20) » TYPE_CD VARCHAR(S)
» COMMIT_COUNT BIGINT(20) » CREATE_TIME DATETIME > KEY_NAME VARCHAR(100)
» READ_COUNT BIGINT{20) 5 G » START_TIME DATETIME » STRING_VAL VARCHAR(250)

5 FILTER_GOUNT BIGINT(20)
 WRITE_COUNT BIGINT{20)

> READ_SKIP_COUNT BIGINT(20)

S WRITE_SKIP_COUNT BIGINT(20)

> PROCESS_SKIP_COUNT BIGINT{20)
> ROLLBACK_COUNT BIGINT(20)

5 EXIT_CODE VARCHAR({100)

; EXIT_MESSAGE VARCHAR(2500)

» LAST_UFPDATED DATETIME

: END_TIME DATETIME

 ETATUS VARCHAR(10)

» EXIT_CODE VARCHAR(100)
 EXIT_MESSAGE VARCHAR(2500)
: LAST UPDATED DATETIME

I

| 3

| BATCH_JOB_EXECUTION_CONTEXT ¥

JOB_EXECUTION_ID BIGINT(20)
» SHORT_CONTEXT VARCHAR(2500)
: SERIALIZED_CONTEXT TEXT

s DATE_VAL DATETIME
> LONG_VAL BIGINT(20)
» DOUBLE_VAL DOUBLE
5 IDENTIFYING CHAR(1)

The corresponding database migration scripts are shipped with the Spring Batch core module under
the org.springframework.batch.core package. They are only available as native scripts and are named

as schema-.sql where is the short name of the database platform. For MySQL it’s called schema-
mysql.sql and for PostgreSQL it’s called schema-postgresql.sql.

28

When Fineract is started, the database dependent schema SQL script will be picked up according to the
datasource configurations.

Chunk oriented processing

Chunking data has not been easier. Spring Batch does a really good job at providing this capability.

In order to save resources when starting/committing/rollbacking transactions for every single
processed item, chunking shall be used. That way, it’s possible to mark the transaction boundaries for a
single processed chunk instead of a single item processing. The image below describes the flow with a
very simplistic example.

I
Loan account IDs)
| Transaction boundary

L Updated
Loan loan
Load loan accounts Pr(;(z:izsu:ﬁ(ian accounts Save q
rocesse
accounts P
(calculate fees) data
J
Load a set of loans - Save the updated data in JDBC batch
{ 4 J

™ Database

In addition to not opening a lot of transactions, the processing could also benefit from JDBC batching.
The last step - writing the result into the database - collects all the processed items and then writes it to
the database; both for MySQL and PostgreSQL (the databases supported by Fineract) are capable of
grouping multiple DML (INSERT/UPDATE/DELETE) statements and sending them in one round-trip,
optimizing the data being sent over the network and granting the possibility to the underlying
database engine to enhance the processing.

Remote partitioning

Spring Batch provides a really nice way to do remote partitioning. The 2 type of objects in this setup is
a manager node - who splits and distributes the work - and a number of worker nodes - who picks up
the work.

In remote partitioning, the worker instances are receiving the work via a messaging system as soon as
the manager splits up the work into smaller pieces.

29

Remote partitioning could be done 2 ways in terms of keeping the job state up-to-date. The main
difference between the two is how the manager is notified about partition completions.

One way is that they share the same database. When the worker does something to a partition - for
example picks it up for processing - it updates the state of that partition in the database. In the
meantime, the manager regularly polls the database until all partitions are processed. This is
visualized in the below diagram.

Updates job state when all partitions are processed

Manager

Partitions

M~

Database

\T/

Messaging System

Partitions Partitions Partitions Partitions

Updates step state
Worker Worker Worker Worker

1 2 3 N

| | { | J

An alternative approach to this - when the database is not intended to be shared between manager and
workers - is to use a messaging system (could be the same as for distributing the work) and the
workers could send back a message to the manager instance, therefore notifying it about
failure/completion. Then the manager can simply keep the database state up-to-date.

Even though the alternative solution decouples the workers even better, we thought it’s not necessary
to add the complexity of handling reply message channel to the manager.

Also, please note that the partitioned job execution is multitenant meaning that the workers will
receive which tenant it should do the processing for.

30

Supported message channels
For remote partitioning, the following message channels are supported by Fineract:

* Any JMS compatible message channels (ActiveMQ, Amazon MQ, etc)
* Apache Kafka

Fault-tolerance scenarios

There are multiple fault tolerance use-cases that this solution must and will support:

1. If the manager fails during partitioning

2. If the manager completes the partitioning and the partition messages are sent to the broker but
while the manager is waiting for the workers to finish, the manager fails

3. If the manager runs properly and during a partition processing a worker instance fails
In case of scenario 1), the simple solution is to re-trigger the job via API or via the Quartz scheduler.

In case of scenario 2), there’s no out-of-the-box solution by Spring Batch. Although there’s a custom
mechanism in place that’ll resume the job upon restarting the manager. There are 2 cases in the
context of this scenario:

« If all the partitions have been successfully processed by workers

 If not all the partitions have been processed by the workers
In the first case, we’ll simply mark the stuck job as FAILED along with it’s partitioning step and instruct
Spring Batch to restart the job. The behavior in this case will be that Spring Batch will spawn a new job

execution but will notice that the partitions have all been completed so it’s not going to execute them
once more.

In the latter case, the same will happen as for the first one but before marking the job execution as
FAILED, we’ll wait until all partitions have been completed.

31

Manager starts

I= there a running job availahle?

Are all partitions have been completed?
Yes Mo
 J
Update job state to FAILED Wait until all partitions have been completed Mo

}rRestart the job

Spring Batch
transitions the job
state to COMPLETED

In case of scenario 3), another worker instance will take over the partition since it hasn’t been finished.

Configurable batch jobs

There’s another type of distinction on the batch jobs. Some of them are configurable in terms of their
behavior.

The currently supported configurable batch jobs are the following:
* LOAN_CLOSE_OF_BUSINESS

The behavior of these batch jobs are configurable. There’s a new terminology we’re introducing called
business steps.

Business steps

Business steps are a smaller unit of work than regular Spring Batch Steps and the two are not meant to
be mixed up because there’s a large difference between them.

A Spring Batch Step’s main purpose is to decompose a bigger work into smaller ones and making sure
that these smaller Steps are properly handled within a single database transaction.

32

In case of a business step, it’s a smaller unit of work. Business steps live within a Spring Batch Step.
Fundamentally, they are simple classes that are implementing an interface with a single method that
contains the business logic.

Here’s a very simple example:

public class MyCustomBusinessStep implements BusinessStep<Loan> {

public Loan process(Loan loan) {
// do something

}

public class LoanCOBItemProcessor implements ItemProcessor<Loan, Loan> {

public Loan process(Loan loan) {
List<BusinessStep<Loan>> bSteps = getBusinessSteps();
Loan result = loan;
for (BusinessStep<Loan> bStep : bSteps) {
result = bStep.process(result);

}

return result;

Business step configuration

The business steps are configurable for certain jobs. The reason for that is because we want to allow
the possibility for Fineract users to configure their very own business logic for generic jobs, like the
Loan Close Of Business job where we want to do a formal "closing" of the loans at the end of the day.

All countries are different with a different set of regulations. However in terms of behavior, there’s no
all size fits all for loan closing.

For example in the United States of America, you might need the following logic for a day closing:

1. Close fully repaid loan accounts
2. Apply penalties
3. Invoke IRS API for regulatory purposes

While in Germany it should be:

1. Close fully repaid loan accounts

2. Apply penalties

33

3. Do some fraud detection on the account using an external service

4. Invoke local tax authority API for regulatory purposes
These are just examples, but you get the idea.
The business steps are configurable through APIs:

Retrieving the configuration for a job:

GET /fineract-provider/api/v1/jobs/{jobName}/steps?tenantIdentifier={tenantId}
HTTP 200

{
"jobName": "LOAN_CLOSE_OF_BUSINESS",

"businessSteps": [

{
"stepName": "APPLY_PENALTY_FOR_OVERDUE_LOANS",
"order": 1
Iy,
{
"stepName": "LOAN_TAGGING",
"order": 2
}

]
}

Updating the business step configuration for a job:

PUT /fineract-provider/api/v1/jobs/{jobName}/steps?tenantIdentifier={tenantId}

{
"businessSteps": [
{
"stepName": "LOAN_TAGGING",
"order": 1
}
{
"stepName": "APPLY_PENALTY_FOR_OVERDUE_LOANS",
"order": 2
}
]
}

The business step configuration for jobs are tracked within the database in the m_batch_business_steps
table.

34

Inline Jobs

Some jobs that work with business entities have a corresponding job that can trigger the job with a list
of specified entities.

When the Inline job gets triggered then the corresponding existing job will run in real time with the
given entities as a dataset.

List of Inline jobs

Inline Job name Corresponding Job

LOAN_COB LOAN_CLOSE_OF_BUSINESS

Triggering the Inline Loan COB Job:

POST /fineract-provider/api/v1/jobs/LOAN_COB/inline?tenantIdentifier={tenantId}

{
"loanIds": [
1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14
]
}

In this case the Loan COB job will work only with the given loan IDs.

Global Configuration for enabling/disabling jobs

Some jobs can be enabled/disabled with global configuration.
If the job is disabled with the global configuration then it cannot be scheduled and cannot be triggered
via APL

List of jobs with global configuration

Job name Application property Environment variable Default value

LOAN_CLOSE_OF_BUSIN fineract.job.loan-cob- FINERACT_JOB_LOAN_C true
ESS enabled OB_ENABLED

Loan account locking

Keeping a consistent state of loan accounts become quite important when we start talking about doing
a business day closing each day for loans.

There are 2 concepts for loan account locking:

1. Soft-locking loan accounts

35

2. Hard-locking loan accounts

Soft-locking simply means that when the Loan COB has been kicked off but workers not yet processing
the chunk of loan accounts (i.e. the partition is waiting in the queue to be picked up) and during this
time a real-time write request (e.g. a repayment/disbursement) comes in through the API, we simply do
an "inlined" version of the Loan COB for that loan account. From a practical standpoint this will mean
that before doing the actual repayment/disbursement on the loan account on the API, we execute the
Loan COB for that loan account, kind of like prioritizing it.

Hard-locking means that when a worker picks up the loan account in the chunk, real-time write
requests on those loan accounts will be simply rejected with an HTTP 409.

The locking is strictly tied to the Loan COB job’s execution but there could be other processes in the
future which might want to introduce new type of locks for loans.

The loan account locking is solved by maintaining a database table which stores the locked accounts,
it’s called m_Tloan_account_locks.

When a loan account is present in the table above, it simply means there’s a lock applied to it and
whether it’s a soft or hard lock can be determined by the lock_owner column.

And when a loan account is locked, loan related write API calls will be either rejected or will trigger an
inline Loan COB execution. There could be a corner case here when the Loan COB fails to process some
loan accounts (due to a bug, inconsistency, etc) and the loan accounts stay locked. This is an intended
behavior to mark loans which are not supposed to be used until they are "fixed".

Since the fixing might involve making changes to the loan account via API (for example doing a
repayment to fix the loan account’s inconsistent state), we need to allow those API calls. Hence, the
lock table includes a bypass_enabled column which disables the lock checks on the loan write APIs.

Technology

* Java: www.oracle.com/technetwork/java/javase/downloads/index.html
* JAX-RS using Jersey
* JSON using Google GSON
» Spring I/O Platform: spring.io/platform
o Spring Framework
o Spring Boot
o Spring Security
o Spring Data (JPA) backed by EclipseLink
* MySQL: www.oracle.com/us/products/mysql/overview/index.html

» PostgreSQL

36

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://spring.io/platform
http://www.oracle.com/us/products/mysql/overview/index.html

TBD

Modules

We are currently working towards a fully modular codebase and will publish more here when we are
ready.

o Even if we are not quite there yet with full modularity you can already create your
own custom modules to extend Fineract. Please see chapter Custom Modules.

Introducing Business Date into Fineract - Community
version

Business date as a concept does not exist as of now in Fineract. It would be business critical to add such
a functionality to support various banking functionalities like “Closing of Business day”, “Having
Closing of Business day relevant jobs”, “Supporting logical date management”.

Glossary

*COB Close of Business; concept of closing a business
day

*Business day Timeframe that logically group together actions
on a particular business date

*Business date Logical date; its value is not tied to the physical
calendar. Represents a business day

*Cob date Logical date; Represents the business date for
actions during COB job execution

*Created date When the transaction was created (audit
purposes). Date + time

*Last modified date When the transaction was last modified (audit
purposes). Date + time

*Submitted on date / Posting date When the transaction was posted. Tenant date or
business date (depends on whether the logical
date concept was introduced or not)

*Transaction date / Value date The date on which the transaction occurred or to

be accounted for

Current behaviour

* Fineract support 3 types of dates:

37

o System date
= Physical/System date of the running environment
o Tenant date
= Timezoned version of the above system date
o User-provided date
= Based on the provided date (as string) and the provided date format
* There is no support of logical date concept

> Independent from the system / tenant date

Jobs are scheduled against system date (CRON), but aligned with the tenant timezone.
* During the job execution all the data and transactions are using the actual tenant date

o It could happen some transactions are written for 17th of May and other for 18th of May, if the
job was executed around midnight

* There is no support of COB
- No backdated transactions by jobs

o There is no support to logically group together transactions and store them with the same
transaction date which is independent of the physical calendar of the tenant

» All the transactions and business logic are tied to a physical calendar

Business date

38

COB job process

Before cut-off Before midnight Next calendar day After COB
23:00 . 0:00 . 01:00 .
System date . : .
[2022.05.16 2022.05.17]
Tenant date . . .
| 2022.05.16 ! 20220517 |
O b
& . .
o Business date !
= ‘ 2022.05.16 2022.05.17 |
COB job date i
2022.05.16
Repayment Repayment Repayment

Journal entry

Transaction date: Transaction date: Transaction date:

Transaction date:

2022.05.16 2022.05.17 2022.05.17
2022.05.16

Posting date: Posting date:) : Paosting date:

2022.05.16 2022.05.17 Posting date: 2022.05.17
2022.05.16

Created date: Created date: Created date:
Created date:

2022.05.16 22:15 2022.05.16 23:15 2022.05.17 01:20

2022.05.17 00:30

Design

Backdated Backdated Backdated
Repayment Repayment Repayment
Transaction date: Transaction date: Transaction date:
2022.05.15 20220515 20220515
Posting date: Posting date: Posting date:
2022.05.16 20220517 20220517
Created date: Created date: Created date:
2022.05.16 22:45 2022.05.16 23:45 2022.05.17 01:45

R R T N N TR NI E I L S ey - s e

R T I A A kY

R I I I R e RN R R

By introducing the business day concept we are not tied anymore to the physical calendar of the
system or the tenant. We got the ability to define our own business day boundaries which might end 15
minutes before midnight and any incoming transactions after the cutoff will be accounted for the
following business day.

It is a logical date which makes it possible to separate the business day from the physical calendar:

39

* Close a business day before midnight
* Close a business day at midnight
* Close a business day after midnight
Closing a Business Day could be a longer process (see COB jobs) meanwhile some processes shall still

be able to create transactions for that business day (COB jobs), but others are meant to create the
transactions for the next (incoming transactions): Business date concept is there to sort that out.

Business date concept is essential when:

* Having COB jobs:
o When the COB was triggered:
= All the jobs which processing the data must still accounted for actual business day
= All the incoming transactions must be accounted to the next business day
* Business day is ending before / after midnight (tenant date / system date)
* Testing purposes:

o Since the transactions and job execution is not tied anymore to a physical calendar, we can
easily test a whole loan lifecycle by altering the business date

* Handling disruption of service: For any unseen reason the system goes down or there are any
disruption in the workflow, the “missed days” can easily be processed one by one as nothing
happened

o There is a disruption at 2022-06-02

o The issue is fixed by 2022-06-05

o The COB flow can be executed for 2022-06-03 and when it is finished for 2022-06-04 and after
when the time arrives for 2022-06-05

This logical date is manageable via:

* Job
* API

To maintain such separation from physical calendar we need to introduce the following new dates:

* Business date
e COB date
o Can be calculated based on the actual business date

= Depend on COB date strategy (see below)

40

Business date

The - logical - date of the actual business day, eg: 2022-05-06

* It does not support time parts
It can be managed manually (via API call) or automatically (via scheduled job)
* All business actions during the business day shall use this date:

o Posting / submitted on date of transactions

o Submitted on date of actions

> (Regular) jobs

It will be used in every situation where the transaction date / value date is not provided by the user
or the user provided date shall be validated.

o Opening date
o Closing date
o Disbursal date
- Transaction/Value date
o Posting/Submitted date
o Reversal date
» Will not be use for audit purposes:
> Created on date

o Updated on date

COB date

The - logical - date of the business day for job execution, eg: 2022-05-05

* It can be calculated based on the business date
o COB date = business date - 1 day
o Automatically modified alongside with the business date change

* It does not support time parts

It is automatically managed by business date change
o Configurable
* Itis used only via COB job execution

o When we create / modify any business data during the COB job execution, the COB date is to be
used:

= Posting date of transactions

= Submitted on date of actions

41

= Transaction / value date of any actions

Some basic example
Apply for a loan

#1

Tenant date: 2022-05-23 14:22:12

Business date: 2022-05-22

Submitted on date: 2022-05-23

Outcome: FAIL

Message: The date on which a loan is submitted cannot be in the future.

Reason: Even the tenant date is 2022-05-23, but the business date was 2022-05-22 which means
anything further that date must be considered as a future date.

#2
Tenant date: 2022-05-23 14:22:12
Business date: 2022-05-22
Submitted on date: 2022-05-22
Outcome: SUCCESS
Loan application details:

* Submitted on date: 2022-05-22
Repayment for a loan
#1
Tenant date: 2022-05-25 11:22:12
Business date: 2022-05-24
Transaction date: 2022-05-25
Outcome: FAIL
Message: The transaction date cannot be in the future.

Reason: Even the physical date is 2022-05-25, but the business date was 2022-05-24 which means

42

anything further that date must be considered as a future date.

#2

Tenant date: 2022-05-25 11:22:12
Business date: 2022-05-24
Transaction date: 2022-05-23
Outcome: SUCCESS

Loan transaction details:

e Submitted on date: 2022-05-24
e Transaction date: 2022-05-23
e Created on date: 2022-05-25 11:22:12

Changes in Fineract
We shall modify at all the relevant places where the tenant date was used:
« With very limited exceptions all places where the tenant date is used we need to modify to use the
business date.
* Replace system date with tenant date or business date (exceptions may apply)
* Add missing Value dates and Posting dates to entities
* Having a generic naming conventions for JPA fields and DB fields
* Renaming the fields accordingly
* Evaluate value date (transaction date) and posting date (submitted on date), created on date usages
* Jobs to be checked and modified accordingly
* Native queries to be checked and modified accordingly
* Reports to be checked and modified accordingly
* Every table where update is supported the AbstractAuditableCustom should be implemented
* Amend Transactions and Journal entries date handling to fit for business date concept
 For audit fields we shall introduce timezoned datetimes and store them in database accordingly
o Storing DATETIME fields without Timezone is potential problem due to the daylight savings

o Also, some external libs (Ilike Quartz) are using system timezone and Fineract will using Tenant
timezone for audit fields. To be able to distinct them in DB we shall use DATETIME with
TIMESTAMP column types and use timezoned java time objects in the application

43

Reliable event framework

Fineract is capable of generating and raising events for external consumers in a reliable way. This
section is going to describe all the details on that front with examples.

Framework capabilities

ACID (transactional) guarantee

The event framework must support ACID guarantees on the business operation level.
Let’s see a simple use-case:

1. A client applies to a loan on the UI
2. The loan is created on the server

3. Aloan creation event is raised
What happens if step 3 fails? Shall it fail the original loan creation process?

What happens if step 2 fails but step 3 still gets executed? We’re raising an event for a loan that hasn’t
been created in reality.

Therefore, raising an event is tied to the original business transaction to ensure the data that’s getting
written into the database along with the respective events are saved in an all-or-nothing fashion.

Messaging integration

The system is able to send the raised events to downstream message channels. The current
implementation supports the following message channels:

* ActiveMQ

Ordering guarantee

The events that are raised will be sent to the downstream message channels in the same order as they
were raised.

Delivery guarantee

The framework supports the at-least-once delivery guarantee for the raised events.

Reliability and fault-tolerance

In terms of reliability and fault-tolerance, the event framework is able to handle the cases when the
downstream message channel is not able to accept events. As soon as the message channel is back to
operational, the events will be sent again.

44

Selective event producing

Whether or not an event must be sent to downstream message channels for a particular Fineract
instance is configurable through the UI and APIL.

Standardized format

All the events sent to downstream message channels are conforming a standardized format using Avro
schemas.

Extendability and customizations

The event framework is capable of being easily extended with new events for additional business
operations or customizing existing events.

Ability to send events in bulk

The event framework makes it possible to sort of queue events until they are ready to be sent and send
them as a single message instead of sending each event as a separate, individual one.

For example during the COB process, there might be events raised in separate business steps which
needs to be sent out but they only need to be sent out at the end of the COB execution process instead
of one-by-one.

Architecture

Intro

On a high-level, the concept looks the following. An event gets raised in a business operation. The event
data gets saved to the database - to ensure ACID guarantees. An asynchronous process takes the saved
events from the database and puts them onto a message channel.

The flow can be seen in the following diagram:

45

Fineract

- N Saves loan approval
—— Approve loan Saves a new event to be sent
PP » AP functionality DB
/N L)
1. Reads unsent events
' Ty
Async event 3. Deletes/archives sent events
processor |
e i

Downstream message channel

i *M
2. Sends events (waits for ACK)

Fineract domain

R I I I R R

External system domain
Consumes events

External system
consuming events

Foundational business events

The whole framework is built upon an existing infrastructure in Fineract; the Business Events.

As a quick recap, Business Events are Fineract events that can be raised at any place in a business
operation using the BusinessEventNotifierService. Callbacks can be registered when a certain type of
Business Event is raised and other business operations can be done. For example when a Loan gets
disbursed, there’s an interested party doing the Loan Arrears Aging recalculation using the Business
Event communication.

The nice thing about the Business Events is that they are tied to the original transaction which means if
any of the processing on the subscriber’s side fail, the entire original transaction will be rolled back.
This was one of the requirements for the Reliable event framework.

Event database integration

The database plays a crucial part in the framework since to ensure transactionality, - without doing
proper transaction synchronization between different message channels and the database - the
framework is going to save all the raised events into the same relational database that Fineract is
using.

Database structure

The database structure looks the following

46

Name

id

type

schema

data

created_at

status

sent_at

idempotency_key

business_date

Type

number

text

text

BLOB
(MySQL/MariaDB),
BYTEA (PostgreSQL)

timestamp

text

timestamp

text

date

Description

Auto incremented ID.

Not null.

The event type as a
string.

Not null.

The fully qualified name

of the schema that was
used for the data

serialization, as a string.

Not null.

The event payload as
Avro binary.

Not null.

UTC timestamp when
the event was raised.

Not null.

Enum text representing
the status of the
external event.

Not null, indexed.

UTC timestamp when
the event was sent.

Randomly generated
UUID upon inserting a
row into the table for
idempotency purposes.

Not null.

The business date to
when the event was
generated.

Not null, indexed.

Example

LoanApprovedBusinessEve
nt

org.apache.fineract.avr
0.loan.v1.LoanAccountDa
taV1l

2022-09-06
14:20:10.148627 +00:00

TO_BE_SENT, SENT

2022-09-06
14:30:10.148627 +00:00

68aed@85-8235-4722-
b27d-b38674c19445

2022-09-05

47

The above database table contains the unsent events which later on will be sent by an asynchronous
event processor.

Upon successfully sending an event, the corresponding statuses will be updated.

Avro schemas
For serializing events, Fineract is using Apache Avro. There are 2 reasons for that:

* More compact storage since Avro is a binary format

* The Avro schemas are published with Fineract as a separate JAR so event consumers can directly
map the events into POJOs

There are 3 different levels of Avro schemas used in Fineract for the Reliable event framework which
are described below.

Standard event schema

The standard event schema is for the regular events. These schemas are used when saving a raised
event into the database and using the Avro schema to serialize the event data into a binary format.

For example the OfficeDataV1 Avro schema looks the following:

48

OfficeDataV1.avsc

"name": "OfficeDataV1",

“namespace": "org.apache.fineract.avro.office.

"type": "record",
"fields": [
{
"default": null,
Ilnamell: Il_id"’

"type": [
"null",
"long"
]
I
{
"default": null,
"name": "name",
"type": [
"null",
"string"
]
I
{
"default": null,
"name": "nameDecorated",
"type": [
"null",
"string"
]
I
{
"default": null,
"name": "externalld",
"type": [
"null",
"string"
]
I
{
"default": null,
"name": "openingDate",
"type": [
"null",
"string"
]
I

49

"default": null,
"name": "hierarchy",

"type": [
"null",
"string"
]
H
{
"default": null,
"name": "parentId",
"type": [
"null",
"long"
]
I
{
"default": null,
"name": "parentName",
"type": [
"null",
"string"
]
I
{
"default": null,
"name": "allowedParents",
"type": [
"null",
{
"type": "array",
"items": "org.apache.fineract.avro.office.v1.0fficeDataV1"
}
]
}

Event message schema

The event message schema is just a wrapper around the standard event schema with extra metadata
for the event consumers.

Since Avro is strongly typed, the event content needs to be first serialized into a byte sequence and that
needs to be wrapped around.

50

This implies that for putting a single event message onto a message queue for external consumption,
data needs to be serialized 2 times; this is the 2-level serialization.

1. Serializing the event

2. Serializing the already serialized event into an event message using the message wrapper
The message schema looks the following:

MessageV1.avsc

{

"name": "MessageV1",

"namespace”: "org.apache.fineract.avro",

"type": "record",

"fields": [

{

"name": "id",
"doc": "The ID of the message to be sent",

“type": "long"
iy
{
"name": "source",
"doc": "A unique identifier of the source service",
"type": "string"
I
{

"name": "type",

"doc": "The type of event the payload refers to. For example
LoanApprovedBusinessEvent",

"type": "string"

I

{
"name": "category",
"doc": "The category of event the payload refers to. For example LOAN",
"type": "string"

H

{

"name": "createdAt",
"doc": "The UTC time of when the event has been raised; in
ISO_LOCAL_DATE_TIME format. For example 2011-12-03710:15:30",
"type": "string"
iy
{

"name": "businessDate",

"doc": "The business date when the event has been raised; in ISO_LOCAL_DATE
format. For example 2011-12-03",

"type": "string"

51

{
"name": "tenantId",
"doc": "The tenantId that the event has been sent from. For example default",
"type": "string"

I

{

"name": "idempotencyKey",
"doc": "The idempotency key for this particular event for consumer de-
duplication",
"type": "string"
},
{

"name": "dataschema",

"doc": "The fully qualified name of the schema of the event payload. For
example org.apache.fineract.avro.loan.v1.LoanAccountDataV1",

"type": "string"

b

{
"name": "data",
"doc": "The payload data serialized into Avro bytes",
Iltypell: llbytesll

}

Bulk event schema

The bulk event schema is used when multiple events are supposed to be sent together. This schema is
used also when serializing the data for the database storing but the idea is quite simple. Have an array
of other event schemas embedded into it.

Since Avro is strongly typed, the array within the bulk event schema is an array of MessageV1 schemas.
That way the consumers can decide which events they want to deserialize and which don’t.

This elevates the regular 2-level serialization/deserialization concept up to a 3-level one:

1. Serializing the standard events
2. Serializing the standard events into a bulk event

3. Serializing the bulk event into an event message

Versioning

Avro is quite strict with changes to an existing schema and there are a number of compatibility modes
available.

Fineract keeps it simple though. Version numbers - in the package names and in the schema names -

32

are increased with each published modification; meaning that if the OfficeDataV1 schema needs a new
field and the 0fficeDataV1 schema has been published officially with Fineract, a new OfficeDataV2 has
to be created with the new field instead of modifying the existing schema.

This pattern ensures that a certain event is always deserialized with the appropriate schema
definition, otherwise the deserialization could fail.

Code generation

The Avro schemas are described as JSON documents. That’s hardly usable directly with Java hence
Fineract generates Java POJOs from the Avro schemas. The good thing about these POJOs is the fact that
they can be serialized/deserialized in themselves without any magic since they have a toByteBuffer and
fromByteBuffer method.

From POJO to ByteBuffer:

LoanAccountDataV1 avroDto = ...
ByteBuffer buffer = avroDto.toByteBuffer();

From ByteBuffer to POJO:

ByteBuffer buffer = ...
LoanAccountDataV1 avroDto = LoanAccountDataV1.fromByteBuffer(buffer);

o The ByteBuffer is a stateful container and needs to be handled carefully. Therefore
Fineract has a built-in ByteBuffer to byte array converter; ByteBufferConverter.
Downstream event consumption

When consuming events on the other side of the message channel, it’s critical to know which events
the system is interested in. With the multi-level serialization, it’s possible to deserialize only parts of
the message and decide based on that whether it makes sense for a particular system to deserialize the
event payload more.

Whether events are important can be decided based on:

* the type attribute in the message
* the category attribute in the message

* the dataschema attribute in the message

These are the main attributes in the message wrapper one can use to decide whether an event message
is useful.

If the event needs to be deserialized, the next step is to find the corresponding schema definition.

33

That’s going to be sent in the dataschema attribute within the message wrapper. Since the attribute
contains the fully-qualified name of the respective schema, it can be easily resolved to a Class object.
Based on that class, the payload data can be easily deserialized using the fromByteBuffer method on
every generated schema POJO.

Message ordering

One of the requirements for the framework is to provide ordering guarantees. All the events have to
conform a happens-before relation.

For the downstream consumers, this can be verified by the id attribute within the messages. Since it’s
going to be a strictly-monotonic numeric sequence, it can be used for ordering purposes.

Event categorization

For easier consumption, the terminology event category is introduced. This is nothing else but the
bounded context an event is related to.

For example the LoanApprovedBusinessEvent and the LoanWaivelnterestBusinessEvent are both
related to the Loan bounded contexts.

The category in which an event resides in is included in the message under the category attribute.

The existing event categories can be found under the Event categories section.

Asynchronous event processor

The events stored in the database will be picked up and sent by a regularly executed job.

This job is a Fineract job, scheduled to run for every minute and will pick a number of events in order.
Those events will be put onto the downstream message channel in the same order as they were raised.

Purging events

The events database table is going to grow continuously. That’s why Fineract has a purging
functionality in place that’s gonna delete old and already sent events.

It’s implemented as a Fineract job and is disabled by default. It’s called TBD.

Usage

Using the event framework is quite simple. First, it has to be enabled through properties or
environment variable.

The respective options are the following:

* the fineract.events.external.enabled property

54

e the FINERACT_EXTERNAL EVENTS_ENABLED environment variable
These configurations accept a boolean value; true or false.

The key component to interact with is the BusinessEventNotifierService#notifyPostBusinessEvent
method.

Raising events

Raising events is really easy. An instance of a BusinessEvent interface is needed, that’s going to be the
event. There are plenty of them available already in the Fineract codebase.

And that’s pretty much it. Everything else is taken care of in terms of event data persisting and later on
putting it onto a message channel.

An example of event raising:

public CommandProcessingResult createClient(final JsonCommand command) {

businessEventNotifierService.notifyPostBusinessEvent(new ClientCreateBusinessEvent
(newClient));

return ...;

e The above code is copied from the ClientWritePlatformServicelpaRepositoryImpl class.

Example event message content

Since the message is serialized into binary format, it’s hard to represent in the documentation
therefore here’s a JSON representation of the data, just as an example.

{
"id": 121,
"source": "a65d759d-04f9-4ddf-ach2-34fabd1f5a2b5",
“type": "LoanApprovedBusinessEvent",
"category": "Loan",
"createdAt": "2022-09-05T10:15:30",
"tenantId": "default",
"idempotencyKey": "abda146d-68b5-48ca-b527-16d2b7c5daef",
"dataschema": "org.apache.fineract.avro.loan.v1.LoanAccountDataV1",
"data": "..."
}

55

o The source attribute refers to an ID that’s identifying the producer service. Fineract
will regenerate this ID upon each application startup.
Raising bulk events

Raising bulk events is really easy as well. The 2 key methods are:

* BusinessEventNotifierService#fstartExternalEventRecording

* BusinessEventNotifierService#fstopExternalEventRecording

First, you have to start recording your events. This recording will be applied for the current thread.
And then you <can raise as many events as you want with the regular
BusinessEventNotifierService#inotifyPostBusinessEvent method, but they won’t get saved to the
database immediately. They’ll get "recorded" into an internal buffer.

When you stop recording using the method above, all the recorded events will be saved as a bulk event
to the database; and serialized appropriately.

From then on, the bulk event works just like any of the event. It'll be picked up by the processor to send
it to a message channel.

Event categories

TBD

Selective event producing

TBD

Customizations
The framework provides a number of customization options:

* Creating new events (that’s already given by the Business Events)
* Creating new Avro schemas

* Customizing what data gets serialized for existing events
In the upcoming sections, that’s what going to be discussed.

Creating new events

Creating new events is super easy. Just create an implementation of the BusinessEvent interface and
that’s it.

From then on, you can raise those events in the system, although you can’t publish them to an external
message channel. If you have the event framework enabled, it’s going to fail with not finding the

56

appropriate serializer for your business event.

There are existing serializers which might be able to handle your new event. For
example the LoanBusinessEventSerializer is capable of handling all LoanBusinessEvent
subclasses so there’s no need to create a brand new serializer.

The interface looks the following:
BusinessEvent.java
public interface BusinessEvent<T> {
T get();
String getType();
String getCategory();

Long getAggregateRootId();

Quite simple. The get method should return the data you want to pass within the event instance. The
getType method returns the name of the business event that’s gonna be saved as the type into the
database.

Creating a new business event only means that it can be used for raising an event. To
o make it compatible with the event framework and to be sent to a message channel,
some extra work is needed which are described below.

Creating new Avro schemas and serializers

First let’s talk about the event serializers because that’s what’s needed to make a new event compatible
with the framework.

The serializer has a special interface, BusinessEventSerializer.

57

BusinessEventSerializer.java
public interface BusinessEventSerializer {
<T> boolean canSerialize(BusinessEvent<T> event);
(lass<? extends GenericContainer> getSupportedSchema();

<T> ByteBufferSerializable toAvroDTO(BusinessEvent<T> rawEvent);

An implementation of this interface shall be registered as a Spring bean, and it'll be picked up
automatically by the framework.

e You can look at the existing serializers for implementation ideas.

New Avro schemas can be easily created. Just create a new Avro schema file in the fineract-avro-
schemas project under the respective bounded context folder, and it will be picked up automatically by
the code generator.

BigDecimal support in Avro schemas

Apache Avro by default doesn’t support complex types like a BigDecimal. It has to be implemented
using a custom snippet like this:

{
"logicalType": "decimal",
"precision": 27,
"scale": 8,
Iltypell: Ilbytesll
¥

It’s a 20 precision and 8 scale BigDecimal.

Obviously it’s quite challenging to copy-paste this snippet to every single BigDecimal field, so there’s a
customization in place for Fineract.
The type bigdecimal is supported natively, and you’re free to use it like this:

38

"default": null,
"name": "principal”,
"type": [
"null",
"bigdecimal”

o This bigdecimal type will be simple replaced with the BigDecimal snippet showed
above during the compilation process.

Custom data serialization for existing events

In case there’s a need some extra bit of information within the event message that the default
serializers are not providing, you can override this behavior by registering a brand-new custom
serializer (as shown above).

Since there’s a priority order of serializers, the only thing the custom serializer need to do is to be
annotated by the @0rder annotation or to implement the Ordered interface.

An example custom serializer with priority looks the following:

39

(Ordered.HIGHEST_PRECEDENCE)
public class CustomLoanBusinessEventSerializer implements BusinessEventSerializer {

public <T> boolean canSerialize(BusinessEvent<T> event) {
return ...,

}

public <T> byte[] serialize(BusinessEvent<T> rawEvent) throws IOException {

ByteBuffer buffer = avroDto.toByteBuffer();
return byteBufferConverter.convert(buffer);

public Class<? extends GenericContainer> getSupportedSchema() {
return ...;

}

o All the default serializers are having Ordered.LOWEST_PRECEDENCE.

Appendix A: Properties and environment variables

Property name Environment variable Default value Description
fineract.events.externa FINERACT_EXTERNAL_EVENT false Whether the external
1.enabled S_ENABLED

event sending is enabled
or disabled.

Introducing Advanced payment allocation

Since the first repayment strategy got introduced, many followed, but there was one thing common in
them:

* They were hard coding the allocation rules for each transaction type.

By introducing the "Advanced payment allocation” the idea was to have a repayment strategy which
was:

» supporting dynamic configuration of the allocation rules for transaction types

60

 supporting configuration of more fine-grained allocation rules for future installments

* supporting reprocessing of transactions and charges in chronological order

Glossary

*Advanced payment allocation Ability to configure allocation rules dynamically
for transactions

*Payment allocation Rule that defines which outstanding balance to be
paid of first on which installment

*Re-amortization Transaction amount to be divided into equal
portions by the number of future installments and
those installments to be paid by these portions.

Capabilities

* Payment allocation should be configurable for transactions:
o Repayment
> Goodwill credit
- Payout refund
o Merchant refund
o Charge adjustments
o etc.
* Can be configured for Loan products

- Payment allocation rule changes on the loan product will affect only the newly created Loan
accounts.

* Chronological reprocess order

o Transactions (including disbursements) and charges are (re)processed and allocated in
chronological order

» Support re-amortization between future installments

o Transaction amount to be divided into equal portions (based on the number of future
installments) and to repay each future installment by the calculated portion.

= It’s not hard coded, but usually the principal portion needs to be allocated first, but if there
are still unprocessed amounts, the rest of the outstanding balances are to be allocated based
on the rest of the rules

¢ Main allocation rules (installment level)
o Past Due Installment(s):

= Oldest first

61

o Due Installment(s):
= Normal installment takes priority over Down-payment installment (if applicable)
o Future Installment(s):
= Available allocation orders:
= Next installment first
= Last installment first
= Re-amortization*
» Secondary allocation rules
o Penalty
o Fee
o Interest

o Principal

Configuration

Advanced repayment allocation rules can be configured for the Loan product if "Advanced payment
allocation" got selected as repayment strategy.

There will be a (always required) “DEFAULT” transaction type configuration which acts as fallback
ruleset, if the there are no configured rules for a specific transaction type.

New repayment strategy

* Name: Advanced payment allocation
* Code: advanced-payment-allocation-strategy

e Order: 8

Allocation rules

* Past due penalty

* Past due fee

* Past due principal
* Past due interest
* Due penalty

* Due fee

* Due principal

¢ Due interest

62

* In advance penalty
* In advance fee
* In advance principal

¢ In advance interest

Future installment allocation rules:

e Next installment
e Last installment

¢ Re-amortization

Example Request

{
"paymentAllocation": [
{
"transactionType": "DEFAULT",
"paymentAllocationOrder": [
{
"paymentAllocationRule": "DUE_PAST_PENALTY",
"order": 1
Iy
{
"paymentAllocationRule": "DUE_PAST_FEE",
"order": 2
Jis
{
"paymentAllocationRule": "DUE_PAST_INTEREST",
"order": 3
Iy,
{
"paymentAllocationRule": "IN_ADVANCE_INTEREST",
"order": 14
}
1,
"futureInstallmentAllocationRule": "NEXT INSTALLMENT"
}
I
}

The above request configures the "DEFAULT" allocation rules:

63

* First the already due penalties to be paid
» Second the already due fees to be paid

 Last the future interests to be paid
Also for future installments set the allocation rules as

* First future installment by due date to be paid first

High level design

Flow of advanced payment allocation processing

64

User repays $50

Is advanced
payment strategy
set for Loan?

yos

Load allecation rules for
Loan

Is there allocation
rules for repayment?,

yes

Use allocation rules of
Repayment transaction
type

Use allocation rules of
Default transaction type

Fetch rule

Yes Yes

Is in advance?

Yes

Fetch future
intaliments

Fetch future instaliment
rules

Yes

¥

Pay 50 against the next
instaliments based on installments based on
due date due date

Pay 50 againstthe 1ast) |, 54 cventy across all

future instaliments

Fetch due past Fetch due
installments installiments
L
Pay 50 against the Pay 50 against the du
oldest due intallment intallments
15 Principal? eno No e Is Penalty?
Yes Yes Yes Yes

Pay outstanding Pay i Pay ing fee Pay outstanding
principal portion interest portion portion penalty portion

Is there
remaining

amount?

65

Fineract Development Environment
TBD

Git

TBD

GPG

TBD

Committers

Please make sure to provide your GPG fingerprint in your Apache committer profile at id.apache.org.
Docker
TBD

Docker Compose

TBD

Podman

TBD

Rancher Docker Desktop

TBD

Gradle

TBD

IDE

TBD

Intelli]

TBD

66

https://id.apache.org

Eclipse

TBD

VSCode

TBD

Kubernetes

TBD

Minikube

TBD

Microk8s

TBD

K3d

TBD

Helm Charts

TBD

Tools

TBD

SDKMAN

We recommend using SKDMAN to manage the following developer tools:

« JDK
* Spring Boot CLI
* Gradle (if you need a global installation)

» Asciidoctor]

TBD

Brew

MacOS

TBD

Linux

TBD

68

Custom Modules

0 Currently, modules are a proof of concept feature in Fineract.

Introduction

Creating customizations for Fineract services is easy. The method described here will work both with
our future module guidelines (aka "clean room" modules) and with the intermediary solution we will
put in place to avoid major refactorings.

The folder structure for modules is based on a convention that ensures that your extensions don’t
clash with Fineract’s internals. This is to make sure that your downstream forks of Fineract are easy to
sync. In the past we had all kinds of strategies to add custom code - including editing existing sources
in fineract-provider. This is not recommended.

At the moment the only service(s) we prepared to be overridden/replaced are

o org.apache.fineract.portfolio.note.service.NoteReadPlatformService and
org.apache.fineract.portfolio.note.service.NoteWritePlatformService. Please reach
out on the developer mailing list if you need other services.

The recommended folder structure is very simple. If you follow this recommendation you’ll get some
additional benefits, e. g. you don’t even have to edit settings.gradle to include your new custom
modules. Your modules will also be automatically included in a custom Fineract Docker image build
that you can use for your production deployments.

Let’s assume your company/org is called "ACME Inc." and you are trying to (fully/partially) replace an
existing Fineract service, let’s say those in org.apache.fineract.portfolio.note. The recommended
folder structure would then look something like this:

69

s custom
L

=acme
L note
—7 core
—= Src
L main
2 java
L com.acme.fineract.note.core
= data
L MyData.java
7 service
MyCustomService.java
— build.gradle
— dependencies.gradle
—= service
—= Src
L main
L java
L com.acme.fineract.note.service
AcmeNoteReadService.java
AcmeNoteWriteService.java
— build.gradle
— dependencies.gradle
—= starter
—= Src
L main
|_Java

=com.acme.fineract.note.starter
L AcmeNoteAutoConfiguration.java
—s resources
L, META-INF
spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports
— build.gradle
— dependencies.gradle

As soon as we can publish Fineract module JARs to Maven Central youw’ll have more freedom to setup
your projects (including to setup separate Git repos). But for now please follow these instructions:

70

Create a folder under custom and name it according to your company/organisation (e. g. acme if your
company is ACME Inc.); this way your custom modules can’t clash even with other companies'
modules

Under your company folder create a folder for the category or domain your module is targeting; e. g.

non non

"loan", "client", "account" etc.

Finally, setup library folders for the actual modules you want to create; usually that will be to
replace/extend some existing service, so there could be a service folder, maybe even a core folder,
e. g. if you want to add additional DTOs etc.; we have also an example for COB business steps

Per category/domain you should have a starter library; means: a Spring Boot auto-configuration
setup that makes including your module in Fineract easier ("hands-free"); the necessary parts for a
auto-configuration library are a Spring Java configuration class (annotated with @Configuration)
and a text file at META-
INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports in your starter
resource folder:

com.acme.fineract.portfolio.note.starter.AcmeNoteAutoConfiguration

Please make sure that your module libraries have proper build.gradle files:

description = 'ACME Fineract Note Service'
group = 'com.acme.fineract'

base {
archivesName = 'acme-fineract-note-service'

}

apply from: 'dependencies.gradle’

o You don’t need to edit settings.gradle to add your modules/libraries. If you follow
above convention they’ll get included automatically.

5. The dependency.gradle file could look something like this:

dependencies {
implementation(project(':fineract-core'))
implementation(project(':fineract-provider"))
compileOnly('org.springframework.boot:spring-boot-autoconfigure")

We’ve included by default some basic and useful dependencies for all custom

o modules, like SIf4j, Lombok, the usual testing frameworks (JUnit, Cucumber, Mockito
etc.)

o Do not include your custom module in “fineract-provider’s dependency.gradle file.
This creates a circular dependency and will fail your build.

Custom Services

We are still trying to figure out which internal services make most sense to be
o pluggable. Please join the discussion and let us know if you have a specific
requirement.

Note Service

The Note service is responsible for ... TBD

71

o We chose the note service because it’s interface is very simple and has not many cross
dependencies.

Interfaces

Note Read Service Interface

package org.apache.fineract.portfolio.note.service;

import java.util.Collection;
import org.apache.fineract.portfolio.note.data.NoteData;

public interface NoteReadPlatformService {
NoteData retrieveNote(Long noteld, Long resourceld, Integer noteTypeld);

Collection<NoteData> retrieveNotesByResource(Long resourceld, Integer noteTypeld);

Note Write Service Interface

package org.apache.fineract.portfolio.note.service;

import java.util.Collection;
import org.apache.fineract.portfolio.note.data.NoteData;

public interface NoteReadPlatformService {
NoteData retrieveNote(Long noteld, Long resourceld, Integer noteTypeld);

Collection<NoteData> retrieveNotesByResource(Long resourceld, Integer noteTypeld);

Auto Start Configuration

The rules to replace the Note services are very simple. If you provide an alternative implementation of
the services then the default implementations will not be loaded.

72

Note Auto Starter Configuration

package org.apache.fineract.portfolio.note.starter;

import org.
import org.
import org.
import org.
import org.

import

org.apache.
import org.
import org.
import org.

import

org.apache.
import org.
import org.
import org.
import org.
import org.

apache.fineract.portfolio.client.domain.ClientRepositoryWrapper;
apache.fineract.portfolio.group.domain.GroupRepository;
apache.fineract.portfolio.loanaccount.domain.LoanRepositoryWrapper;
apache.fineract.portfolio.loanaccount.domain.LoanTransactionRepository;
apache.fineract.portfolio.note.domain.NoteRepository;

fineract.portfolio.note.serialization.NoteCommandFromApiJsonDeserializer;
apache.fineract.portfolio.note.service.NoteReadPlatformService;
apache.fineract.portfolio.note.service.NoteReadPlatformServiceImpl;
apache.fineract.portfolio.note.service.NoteWritePlatformService;

fineract.portfolio.note.service.NoteWritePlatformServiceJpaRepositoryImpl;
apache.fineract.portfolio.savings.domain.SavingsAccountRepository;
springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;
springframework.context.annotation.Bean;
springframework.context.annotation.Configuration;
springframework.jdbc.core.JdbcTemplate;

public class NoteAutoConfiguration {

public NoteReadPlatformService noteReadPlatformService(JdbcTemplate jdbcTemplate)

return new NoteReadPlatformServiceImpl(jdbcTemplate);

}

public

NoteWritePlatformService noteWritePlatformService(NoteRepository

noteRepository, ClientRepositoryWrapper clientRepository,

GroupRepository groupRepository, LoanRepositoryWrapper loanRepository,

LoanTransactionRepository loanTransactionRepository,

NoteCommandFromApiJsonDeserializer fromApiJsonDeserializer,

SavingsAccountRepository savingsAccountRepository) {
return new NoteWritePlatformServiceJpaRepositoryImpl(noteRepository,
clientRepository, groupRepository, loanRepository,

loanTransactionRepository, fromApiJsonDeserializer,

savingsAccountRepository);

}
}

73

Custom Business Steps

It is very easy to add your own business steps to Fineract’s default steps:

1. Create a custom module (e. g. custom/acme/steps, follow the instructions on how to create a custom
module)

2. Create a class that implements interface org.apache.fineract.cob.COBBusinessStep

3. Provide the custom database migration to add the necessary information about your business step
in table m_batch_business_steps

Business Step Interface
package org.apache.fineract.cob;
import org.apache.fineract.infrastructure.core.domain.AbstractPersistableCustom;
public interface COBBusinessStep<T extends AbstractPersistableCustom<Long>> {
T execute(T input);
String getEnumStyledName();

String getHumanReadableName();

Business Step Implementation

74

Custom Business Step Implementation Example
package com.acme.fineract.loan.cob;

import lombok.RequiredArgsConstructor;

import lombok.extern.s1f4j.S1f4j;

import org.apache.fineract.cob.loan.LoanCOBBusinessStep;

import org.apache.fineract.portfolio.loanaccount.domain.Loan;

import org.apache.fineract.portfolio.loanaccount.domain.LoanAccountDomainService;
import org.springframework.beans.factory.InitializingBean;

import org.springframework.stereotype.Component;

public class AcmeNoopBusinessStep implements LoanCOBBusinessStep, InitializingBean {
private static final String ENUM_STYLED_NAME = "ACME_LOAN_NOOP";
private static final String HUMAN_READABLE_NAME = "ACME Loan Noop";

// NOTE: just to demonstrate that dependency injection is working
private final LoanAccountDomainService loanAccountDomainService;

public void afterPropertiesSet() throws Exception {
log.warn("Acme COB Loan: '{}'", get(Class().getCanonicalName());
}

public Loan execute(Loan input) {
return input;

}

public String getEnumStyledName() {
return ENUM_STYLED_NAME;
}

public String getHumanReadableName() {
return HUMAN_READABLE_NAME;
}

As you can see this implementation is very simple and doesn’t do much. There are some simple
conventions though that you should follow implementing your own business steps:

75

1. Make sure the value returned by method getEnumStyledName() is unique; it’s a good idea to choose a
prefix that reflects the name of your organization (in this example ACME)

2. You have more freedom for the value returned by getHumanReadableName(), but it’s a good idea to
keep this value as unique as possible

Business Step Database Migration

Business Step Database Migration Example

<databaseChangelog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">
<changeSet author="acme" id="1">
<insert tableName="m_batch_business_steps">
<column name="job_name" value="LOAN_CLOSE_OF_BUSINESS"/>
<column name="step_name" value="ACME_LOAN_NOOP"/>
<column name="step_order" value="5"/>
</insert>
</changeSet>
</databaseChangelog>

o See also chapter about batch jobs in this documentation.

Custom Loan Transaction Processors

Fineract has 7 built-in loan transaction processors:
1. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.CreocorelLoanRepayme
ntScheduleTransactionProcessor

2. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.EarlyPaymentLoanRep
aymentScheduleTransactionProcessor

3. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.FineractStyleloanRe
paymentScheduleTransactionProcessor

4. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.HeavensFamilylLoanRe
paymentScheduleTransactionProcessor

5. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.InterestPrincipalPe
naltyFeesOrderLoanRepaymentScheduleTransactionProcessor

6. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.PrincipallnterestPe
naltyFeesOrderLoanRepaymentScheduleTransactionProcessor

7. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.RBILoanRepaymentSch
eduleTransactionProcessor

Default Loan Transaction Processor configuration

76

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Conditional;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Lazy;

public class LoanAccountAutoStarter {

(CreocoreLoanRepaymentScheduleTransactionProcessorCondition.class)
public CreocorelLoanRepaymentScheduleTransactionProcessor
creocoreLoanRepaymentScheduleTransactionProcessor() {
return new CreocorelLoanRepaymentScheduleTransactionProcessor();

}

(EarlyRepaymentLoanRepaymentScheduleTransactionProcessorCondition.class)
public EarlyPaymentLoanRepaymentScheduleTransactionProcessor
earlyPaymentLoanRepaymentScheduleTransactionProcessor() {
return new EarlyPaymentLoanRepaymentScheduleTransactionProcessor();

}

(MifosStandardLoanRepaymentScheduleTransactionProcessorCondition.class)
public FineractStylelLoanRepaymentScheduleTransactionProcessor
fineractStylelLoanRepaymentScheduleTransactionProcessor() {
return new FineractStylelLoanRepaymentScheduleTransactionProcessor();

}

(HeavensFamilyLoanRepaymentScheduleTransactionProcessorCondition.class)
public HeavensFamilylLoanRepaymentScheduleTransactionProcessor
heavensFamilyLoanRepaymentScheduleTransactionProcessor() {
return new HeavensFamilyLoanRepaymentScheduleTransactionProcessor();

}

(InterestPrincipalPenaltiesFeesLoanRepaymentScheduleTransactionProcessorCondition.class)
public InterestPrincipalPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor
interestPrincipalPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor() {
return new
InterestPrincipalPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor();

}

(PrincipallnterestPenaltiesFeesLoanRepaymentScheduleTransactionProcessorCondition.class)

77

public PrincipallnterestPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor
principallnterestPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor() {

return new

PrincipallnterestPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor();

}

All default processor implementations are enabled by default, but can also be prevented from being
loaded into memory by a simple configuration in application.properties. Use the environment
variables you see below in your Kubernetes and Docker Compose deployments to override the default

behavior.

Default Loan Transaction Processor Application Properties

fineract.partitioned-job.partitioned-job-properties[@].job-name=LOAN_COB
fineract.partitioned-job.partitioned-job-properties[@].chunk-

size=${LOAN_COB_CHUNK SIZE:

100}

fineract.partitioned-job.partitioned-job-properties[@].partition-
size=${LOAN_COB_PARTITION_SIZE:100}
fineract.partitioned-job.partitioned-job-properties[@].thread-pool-core-pool-
size=${LOAN_COB_THREAD_POOL_CORE_POOL_SIZE:5}
fineract.partitioned-job.partitioned-job-properties[@].thread-pool-max-pool-
size=${LOAN_COB_THREAD_POOL_MAX_POOL_SIZE:5}
fineract.partitioned-job.partitioned-job-properties[@].thread-pool-queue-

capacity=${LOAN_COB_THREAD_

Implement Processors

POOL_QUEUE_CAPACITY:20}

Loan Transaction Processor Interface

package org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor;

import java.time.LocalDate;
import java.util.List;

import java.util.Set;

import org.apache.fineract.
import org.apache.fineract.
import org.apache.fineract.
import org.apache.fineract.
import org.apache.fineract.
import org.apache.fineract.

organisation.monetary.domain.MonetaryCurrency;
organisation.monetary.domain.Money;
portfolio.loanaccount.domain.ChangedTransactionDetail;
portfolio.loanaccount.domain.LoanCharge;
portfolio.loanaccount.domain.LoanRepaymentScheduleInstallment;
portfolio.loanaccount.domain.LoanTransaction;

public interface LoanRepaymentScheduleTransactionProcessor {

String getCode();

String getName();

78

boolean accept(String s);

/**

* Provides support for processing the latest transaction (which should be the latest

transaction) against the loan
* schedule.
*/
void processlLatestTransaction(LoanTransaction loanTransaction, TransactionCtx ctx);

/**

* Provides support for passing all {@link LoanTransaction}'s so it will completely
re-process the entire loan

* schedule. This 1is required in cases where the {@link LoanTransaction} being
processed is in the past and falls

* before existing transactions or and adjustment is made to an existing in which
case the entire loan schedule

* needs to be re-processed.

*/

ChangedTransactionDetail reprocessLoanTransactions(LocalDate disbursementDate, List
<LoanTransaction> repaymentsOrWaivers,

MonetaryCurrency currency, List<LoanRepaymentScheduleInstallment>

repaymentScheduleInstallments, Set<LoanCharge> charges);

Money handleRepaymentSchedule(List<LoanTransaction> transactionsPostDisbursement,
MonetaryCurrency currency,
List<LoanRepaymentScheduleInstallment> installments, Set<LoanCharge>
loanCharges);

/**

* Used in interest recalculation to introduce new interest only installment.
*/

boolean isInterestFirstRepaymentScheduleTransactionProcessor();

79

Custom Loan Transaction Processor Example
package com.acme.fineract.loan.processor;

import
org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.FineractStylel
oanRepaymentScheduleTransactionProcessor;

import org.springframework.stereotype.Component;

public class AcmelLoanRepaymentScheduleTransactionProcessor extends
FineractStylelLoanRepaymentScheduleTransactionProcessor {

public static final String STRATEGY_CODE = "acme-standard-strategy";

public static final String STRATEGY_NAME
processing strategy";

"ACME Corp.: standard loan transaction

public String getCode() {
return STRATEGY _CODE;

}

public String getName() {
return STRATEGY_NAME;

}

The example implementation doesn’t do much. We are just overriding one of the default processor

implementations
org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.FineractStyleLoanRepaym

entScheduleTransactionProcessor and give the custom processor it’'s own lookup code and name
(descriptive text for display in Uls, e. g. when configuring a loan product). As usual it is a good idea to
follow some simple conventions:

1. Make sure the value returned by getCode() is unique. Prefixing it with characters that reflect your
organization name (here acme-) is a good idea.

2. You have more freedom for the descriptive test returned by getName(), but it is still a good idea to
keep the value unique to avoid confusion.

Method getCode()

Lookup value that is used to pick a loan transaction processor (see processor factory).

80

Method getName()

Descriptive text about the loan transaction processor that is mostly used in user interfaces.

Method handleTransaction()

TBD

Method handleWriteOff()

TBD

Method handleRepaymentSchedule()

TBD

Method isInterestFirstRepaymentScheduleTransactionProcessor()

TBD

Method handleRefund()

TBD

Method handleChargeback()

TBD

Method processTransactionsFromDerivedFields()

TBD

Override Processor Factory

The processor factory has no reference to any specific implementation of the loan transaction
processor interface. All available implementations will be injected here (internal default and custom
implementations). Processor instances can be looked up via method determineProcessor (). You can pass
either the code of the processor or the processor’s name to look it up. If a matching processor can’t be
found then the factory function will either return the default instance or fails with an exception
depending on the configuration in application.properties.

It is preferable to use the processor code to lookup processor instances. Lookups via

o processor names are only done in the import service via Excel sheets (should be
fixed).

81

Loan Transaction Processor Factory Implementation
package org.apache.fineract.portfolio.loanaccount.domain;

import java.util.List;

import java.util.Optional;

import lombok.RequiredArgsConstructor;

import
org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.LoanRepaymentSchedu
leTransactionProcessor;

import
org.apache.fineract.portfolio.loanaccount.exception.LoanTransactionProcessingStrategyNotF
oundException;

import org.apache.fineract.portfolio.loanproduct.data.TransactionProcessingStrategyData;
import org.springframework.beans.factory.annotation.Value;

public class LoanRepaymentScheduleTransactionProcessorFactory {

private final LoanRepaymentScheduleTransactionProcessor
defaultlLoanRepaymentScheduleTransactionProcessor;

private final List<LoanRepaymentScheduleTransactionProcessor> processors;

("${fineract.loan.transactionprocessor.error-not-found-fail}")
private Boolean errorNotFoundFail;

public LoanRepaymentScheduleTransactionProcessor determineProcessor(final String
transactionProcessingStrategy) {

Optional<LoanRepaymentScheduleTransactionProcessor> processor = processors.
stream()
.filter(p -> p.accept(transactionProcessingStrategy)).findFirst();

if (processor.isEmpty() && Boolean.TRUE.equals(errorNotFoundFail)) {
throw new LoanTransactionProcessingStrategyNotFoundException
(transactionProcessingStrategy);
} else {
return processor.orElse(defaultLoanRepaymentScheduleTransactionProcessor);
}
}

public List<TransactionProcessingStrategyData> getStrategies() {
return processors.stream().map(p -> new TransactionProcessingStrategyData(null,
p.getCode(), p.getName())).toList();
}
}

82

This is the default factory auto-configuration.

Loan Transaction Processor Factory Auto-Configuration

(RBIIndialLoanRepaymentScheduleTransactionProcessorCondition.class)
public RBILoanRepaymentScheduleTransactionProcessor
rbilLoanRepaymentScheduleTransactionProcessor() {
return new RBILoanRepaymentScheduleTransactionProcessor();

}

If you need then you can override this, e.g. because you want to set a different default processor then
you can do so in your custom module’s auto-configuration.

Custom Loan Transaction Processor Factory Auto-Configuration Example

public LoanRepaymentScheduleTransactionProcessorFactory
loanRepaymentScheduleTransactionProcessorFactory(
AcmeLoanRepaymentScheduleTransactionProcessor
defaultLoanRepaymentScheduleTransactionProcessor,
List<LoanRepaymentScheduleTransactionProcessor> processors) {
return new LoanRepaymentScheduleTransactionProcessorFactory
(defaultLoanRepaymentScheduleTransactionProcessor, processors);

Processor Lookup Failure Configuration Property

fineract.partitioned-job.partitioned-job-properties[@].retry-
1imit=${LOAN_COB_RETRY_LIMIT:5}

Custom Batch Jobs

Fineract provides extension points to define custom batch jobs using module system. Using this
approach custom batch jobs can be defined and configured along with Fineract’s default batch jobs to
extend or customize batch processing.

The batch jobs in Fineract are implemented using Spring Batch. In addition to the Spring Batch
ecosystem, automatic scheduling is done by Quartz Scheduler but it’s also possible to trigger batch jobs
via regular APIs.

For defining custom job:

1. Create custom module (e. g. custom/acme/loan/job), follow the instructions on how to create a
custom module.

2. Create job configuration to register job, job steps, tasklet with job builder factory. (e. g.

83

https://docs.spring.io/spring-batch/docs/current/reference/html/
http://www.quartz-scheduler.org/

com.acme.fineract.loan.job.AcmeNoopJobConfiguration)
Create tasklet for job execution functionality. (e.g. com.acme.fineract.loan.job.AcmeNoopJobTasklet)

Provide the custom database migration to add necessary information about your job in table job.
(e.g. custom/acme/loan/job/src/main/resources/db/custom-changelog/00@1_acme_loan_job.xml)

New job name should be registered along with default jobs so that it can be scheduled at startup.
For registering job name with Fineract job scheduler, create an enum with job name details (e.g.
com.acme.fineract.loan.job.AcmeJobName) and a job name provider configuration which is accessed
by Fineract job scheduler at startup to retrieve job name (e.g.
com.acme.fineract.loan.job.AcmeJobNameConfig).

Job Configuration

84

Job Configuration Example

package com.acme.fineract.loan.job;

import
import
import
import
import
import
import
import
import
import

public

lombok.RequiredArgsConstructor;

org.
org.
org.
org.
org.
org.
org.
.springframework.context.annotation.Confiquration;
org.

org

springframework.batch.core.Job;
springframework.batch.core.Step;
springframework.batch.core.job.builder.JobBuilder;
springframework.batch.core.launch.support.RunldIncrementer;
springframework.batch.core.repository.JobRepository;
springframework.batch.core.step.builder.StepBuilder;
springframework.context.annotation.Bean;

springframework.transaction.PlatformTransactionManager;

class AcmeNoopJobConfiguration {

private final JobRepository jobRepository;
private final PlatformTransactionManager transactionManager;
private final AcmeNoopJobTasklet tasklet;

protected Step acmeNoopJobStep() {
return new StepBuilder(AcmeJobName.ACME_NOOP_JOB.name(), jobRepository).tasklet
(tasklet, transactionManager).build();

}

public Job acmeNoopJob() {
return new JobBuilder(AcmeJobName.ACME_NOOP_JOB.name(), jobRepository).start
(acmeNoopJobStep()).incrementer(new RunIdIncrementer())

}

.build();

Tasklet Definition

85

Job Tasklet Example
package com.acme.fineract.loan.job;

import lombok.extern.s1f4j.S1f4j;

import org.springframework.batch.core.StepContribution;

import org.springframework.batch.core.scope.context.ChunkContext;
import org.springframework.batch.core.step.tasklet.Tasklet;
import org.springframework.batch.repeat.RepeatStatus;

import org.springframework.stereotype.Component;

public class AcmeNoopJobTasklet implements Tasklet {

public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext)
throws Exception {
log.info("Acme custom job execution");
return RepeatStatus.FINISHED;

Database Migration Script for Job

86

Database Migration Script Example

<databaseChangelog

http://www.liquibas

<changeSet auth

<insert tab

<column

<column

<column

<column

<column

<column

<column

<column

<column

<column

<column

<column

<column

<column

<column

<column
</insert>
</changeSet>

<changeSet auth

<update tab

<column

<where>
</update>
</changeSet>

</databaseChangelog

xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
e.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">
or="acme" id="1">

leName="job">

name="name" value="Acme Noop Job"/>
name="display_name" value="Acme Noop Job"/>
name="cron_expression" value="0 10 1/1 * ? *"/>
name="create _time" valueDate="${current datetime}"/>
name="task_priority" valueNumeric="5"/>
name="group_name" />

name="previous_run_start_time"/>

name="job_key" value="Acme Noop Job _ DEFAULT"/>
name="initializing_errorlog"/>

name="1is_active" valueBoolean="false"/>
name="currently_running" valueBoolean="false"/>
name="updates_allowed" valueBoolean="true"/>
name="scheduler_group" valueNumeric="0"/>
name="is_misfired" valueBoolean="false"/>
name="node_id" valueNumeric="1"/>
name="1is_mismatched_job" valueBoolean="true"/>

or="acme" id="2">

leName="job">

name="short_name" value="ACM_NOOP"/>
name="Acme Noop Job'</where>

>

Job Name Configuration

87

Job Name Enum Example
package com.acme.fineract.loan.job;
public enum AcmelobName {
ACME_NOOP_JOB("Acme Noop Job");
private final String name;

AcmeJobName(final String name) {
this.name = name;

}

public String toString() {
return this.name;

}

Job Name Provider Configuration Example
package com.acme.fineract.loan.job;

import java.util.list;

import org.apache.fineract.infrastructure.jobs.service.jobname.JobNameData;

import org.apache.fineract.infrastructure.jobs.service.jobname.JobNameProvider;
import org.apache.fineract.infrastructure.jobs.service.jobname.SimpleJobNameProvider;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

public class AcmeJobNameConfig {

public JobNameProvider acmeJobNameProvider() {
return new SimpleJobNameProvider(List.of(new JobNameData(AcmeJobName
.ACME_NOOP_JOB.name(), AcmeJobName.ACME_NOOP_JOB.toString())));
}
}

Gradle Build Files

Please make sure that your module libraries have proper build.gradle and dependencies.gradle files:

88

Example (build.gradle)
description = 'ACME Fineract Loan Job'
group = 'com.acme.fineract'

base {
archivesName = 'acme-fineract-loan-job'

}

apply from: 'dependencies.gradle’

Example (dependencies.gradle)

dependencies {
implementation(project(':fineract-core'))
implementation(project(':fineract-loan'))
implementation(project(':fineract-provider'))
implementation('org.springframework.batch:spring-batch-integration')
implementation('org.springframework.boot:spring-boot-starter-data-jpa')

Deployment

Custom modules can be deployed using docker image. See chapter about deploying custom modules in
this documentation.

Example command to build docker image

./gradlew :custom:docker:jibDockerBuild

0 See also chapter about batch jobs in this documentation.

Custom Database Migration

If database migrations are needed as part of your customizations then you can add your own
migration scripts. This is again based on conventions:

1. Create folders db/custom-changelog in one of your resources folders; we recommend using the
resources folder in your starter library, but actually any of your custom libs will do.

2. Under db/custom-changelog create an XML changelog file, e. g. changelog-acme-note.xml; you are free
to choose a name for this file, but we recommend being consistent to avoid classpath conflicts.

3. Under db/custom-changelog create a folder parts for your specific changelogs

89

s custom
L acme
|—= note
L starter
—s src
L main
|—=-java
L com.acme.fineract.note.starter
L AcmeNoteAutoConfiguration.java
—s resources
= db
L custom-changelog
= parts
L 0001_acme_note_initial.xml
changelog-acme-note.xml
= META-INF
L spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports
— build.gradle
— dependencies.gradle

And here an example migration script:

<databaseChangelog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.liquibase.org/xml/ns/dbchangelog
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">
<changeSet author="acme" id="1">
<createTable tableName="acme_note_dummy">
<column autoIncrement="true" name="id" type="BIGINT">
<constraints nullable="false" primaryKey="true"/>
</column>
<column name="name" type="VARCHAR(100)">
<constraints unique="true"/>
</column>
<column name="description" type="VARCHAR(500)"/>
</createTable>
</changeSet>
</databaseChangelog>

By default, custom database migration changelogs are executed in context tenant_db.

o That makes sure your changes will be applied to the tenant database (read: main
database and not the tenant store database). In theory you could also target the tenant
configuration database, but it’s not recommended to do that.

Deploying Custom Modules

Custom modules (better: the JAR files) only need to be dropped in Fineract’s 1ibs folder if you run
Fineract from the Spring Boot JAR file. Dynamic loading of external JARs is provided since Fineract
version 1.5.0. For your convenience we’ve created a separate Docker image module that automatically
includes your custom modules (see custom/docker). You can build this Docker image with

90

./gradlew :custom:docker:jibDockerBuild

The Docker image with included custom modules is called fineract-custom.

o We’ll provide soon a way to customize the Docker image parameters (image name,
JVM implementation, JVM args, ports etc.).

Outlook

If this proof of concept is accepted we could prepare more of Fineract’s internal services to be
replaceable. This approach works already very well even if we don’t have proper JAR libraries
published on Maven Central. It’s an important goal to separate customized code from Fineract’s
internals to have soon real modules.

91

Resilience

Introduction Resilience

Fineract had handcrafted retry loops in place for the longest time. A typical retry code would have
looked like this:

Legacy retry code

@Override
@SuppressWarnings("AvoidHidingCauseException™)
@SuppressFBWarnings(value = {
"DMI_RANDOM_USED_ONLY_ONCE" }, justification = "False positive for random
object created and used only once")
public CommandProcessingResult logCommandSource(final CommandWrapper wrapper) {

boolean isApprovedByChecker = false;
// check if is update of own account details
if (wrapper.isUpdateOfOwnUserDetails(this.context.authenticatedUser(wrapper)
.getId())) {
// then allow this operation to proceed.
// maker checker doesn't mean anything here.
isApprovedByChecker = true; // set to true in case permissions have
// been maker-checker enabled by
// accident.
} else {
// if not user changing their own details - check user has
// permission to perform specific task.
this.context.authenticatedUser(wrapper).validateHasPermissionTo(wrapper
.getTaskPermissionName());

}
validateIsUpdateAllowed();

final String json = wrapper.getJson();

CommandProcessingResult result = null;

JsonCommand command;

int numberOfRetries = 0; @

int maxNumberOfRetries = ThreadlLocalContextUtil.getTenant().getConnection()
.getMaxRetriesOnDeadlock();

int maxIntervalBetweenRetries = ThreadlLocalContextUtil.getTenant().getConnection
().getMaxIntervalBetweenRetries();

final JsonElement parsedCommand = this.fromApiJsonHelper.parse(json);

command = JsonCommand.from(json, parsedCommand, this.fromApiJsonHelper, wrapper
.getEntityName(), wrapper.getEntityId(),

wrapper.getSubentityId(), wrapper.getGroupId(), wrapper.getClientId(),

wrapper.getLoanId(), wrapper.getSavingsId(),

92

wrapper.getTransactionId(), wrapper.getHref(), wrapper.getProductId(),
wrapper.getCreditBureauld(),
wrapper.getOrganisationCreditBureauId(), wrapper.getJobName());
while (numberOfRetries <= maxNumberOfRetries) { @
try {
result = this.processAndLogCommandService.executeCommand(wrapper,
command, isApprovedByChecker);
numberOfRetries = maxNumberOfRetries + 1; ®
} catch (CannotAcquirelLockException | ObjectOptimisticlLockingFailureException
exception) {
log.debug("The following command {} has been retried {} time(s)",
command.json(), numberOfRetries);

/***

* Fail if the transaction has been retired for maxNumberOfRetries
**/
if (numberOfRetries >= maxNumberOfRetries) {
log.warn("The following command {} has been retried for the max
allowed attempts of {} and will be rolled back",
command. json(), numberOfRetries);
throw exception;

}

/***

* Else sleep for a random time (between 1 to 10 seconds) and continue
**/
try {
int randomNum = RANDOM.nextInt(maxIntervalBetweenRetries + 1);
Thread.sleep(1000 + (randomNum * 1000));
numberOfRetries = numberOfRetries + 1; @
} catch (InterruptedException e) {
throw exception;
}
} catch (final RollbackTransactionAsCommandIsNotApprovedByCheckerException e)

numberOfRetries = maxNumberOfRetries + 1; ®
result = this.processAndLogCommandService.logCommand(e
.getCommandSourceResult());

}
}
return result;
}
@ counter
@ while loop

® increment to abort

@ increment

93

For better code quality and readability we introduced Resilience4;:
Annotation based retry

private final CommandProcessingService processAndLogCommandService;
private final SchedulerJobRunnerReadService schedulerJobRunnerReadService;
private final ConfigurationDomainService configurationService;

@Override
public CommandProcessingResult logCommandSource(final CommandWrapper wrapper) {

boolean isApprovedByChecker = false;

// check if is update of own account details
if (wrapper.isUpdateOfOwnUserDetails(this.context.authenticatedUser(wrapper)
.getId())) {
// then allow this operation to proceed.
// maker checker doesnt mean anything here.
isApprovedByChecker = true; // set to true in case permissions have
// been maker-checker enabled by
// accident.
} else {
// 1f not user changing their own details - check user has
// permission to perform specific task.
this.context.authenticatedUser(wrapper).validateHasPermissionTo(wrapper
.getTaskPermissionName());

}
validateIsUpdateAllowed();

final String json = wrapper.getJson();
final JsonElement parsedCommand = this.fromApiJsonHelper.parse(json);
JsonCommand command = JsonCommand.from(json, parsedCommand, this
.fromApiJsonHelper, wrapper.getEntityName(), wrapper.getEntityId(),
wrapper.getSubentityId(), wrapper.getGroupId(), wrapper.getClientId(),

wrapper.getLoanId(), wrapper.getSavingsId(),
wrapper.getTransactionId(), wrapper.getHref(), wrapper.getProductId(),

wrapper.getCreditBureauld(),
wrapper.getOrganisationCreditBureauld(), wrapper.getJobName(), wrapper

.getLoanExternalld());

Command

CommandProcessingService

TBD

Retry-able service function executeCommand

94

https://resilience4j.readme.io/docs

private
private
private
private
private
private

private
private

final ToApiJsonSerializer<Map<String, Object>> toApiJsonSerializer;

final ToApiJsonSerializer<CommandProcessingResult> toApiResultJsonSerializer;
final ConfigurationDomainService configurationDomainService;

final CommandHandlerProvider commandHandlerProvider;

final IdempotencyKeyResolver idempotencyKeyResolver;

final CommandSourceService commandSourceService;

final FineractRequestContextHolder fineractRequestContextHolder;
final Gson gson = GoogleGsonSerializerHelper.createSimpleGson();

(name = "executeCommand", fallbackMethod = "fallbackExecuteCommand")
public CommandProcessingResult executeCommand(final CommandWrapper wrapper, final

JsonCommand

command,
final boolean isApprovedByChecker) {

// Do not store the idempotency key because of the exception handling
setIdempotencyKeyStoreFlag(false);

Long commandId = (Long) fineractRequestContextHolder.getAttribute
(COMMAND_SOURCE_ID, null);

boolean isRetry = commandId != null;

boolean isEnclosingTransaction = BatchRequestContextHolder.
isEnclosingTransaction();

CommandSource commandSource = null;
String idempotencyKey;
if (isRetry) {

commandSource = commandSourceService.getCommandSource(commandId);
idempotencyKey = commandSource.getIdempotencyKey();

} else if ((commandId = command.commandId()) != null) { // action on the command

itself
commandSource = commandSourceService.getCommandSource(commandId);
idempotencyKey = commandSource.getIdempotencyKey();
} else {
idempotencyKey = idempotencyKeyResolver.resolve(wrapper);
}

exceptionWhenTheRequestAlreadyProcessed(wrapper, idempotencyKey, isRetry);

AppUser user = context.authenticatedUser(wrapper);
if (commandSource == null) {

if (isEnclosingTransaction) {
commandSource = commandSourceService.getInitialCommandSource(wrapper,

command, user, idempotencyKey);

} else {
commandSource = commandSourceService.saveInitialNewTransaction(wrapper,

command, user, idempotencyKey);

commandId = commandSource.getId();

}

95

}
if (commandId != null) {

storeCommandIdInContext(commandSource); // Store command id as a request
attribute

}

boolean isMakerChecker = configurationDomainService.isMakerCheckerEnabledForTask
(wrapper.taskPermissionName());
if (isApprovedByChecker || (isMakerChecker && user.isCheckerSuperUser())) {
commandSource.markAsChecked(user);

}
setIdempotencyKeyStoreFlag(true);

final CommandProcessingResult result;
try {
result = commandSourceService.processCommand(findCommandHandler (wrapper),
command, commandSource, user, isApprovedByChecker,
isMakerChecker);
} catch (Throwable t) { // NOSONAR
RuntimeException mappable = ErrorHandler.getMappable(t);
ErrorInfo errorInfo = commandSourceService.generateErrorInfo(mappable);
Integer statusCode = errorInfo.getStatusCode();
commandSource.setResultStatusCode(statusCode);
commandSource.setResult(errorInfo.getMessage());
if (statusCode != SC 0OK) {
commandSource.setStatus(ERROR.getValue());
}
if (lisEnclosingTransaction) { // TODO: temporary solution
commandSource = commandSourceService.saveResultNewTransaction
(commandSource);
}
// must not throw any exception; must persist in new transaction as the
current transaction was already
// marked as rollback
publishHookErrorEvent(wrapper, command, errorInfo);
throw mappable;

}

commandSource.setResultStatusCode(SC_0K);
commandSource.updateForAudit(result);
commandSource.setResult(toApiResultJsonSerializer.serializeResult(result));
commandSource.setStatus(PROCESSED.getValue());

96

Fallback function fallbackExecuteCommand

fineractRequestContextHolder.setAttribute(COMMAND_SOURCE_ID, savedCommandSource
.getId());
}

private void publishHookErrorEvent(CommandWrapper wrapper, JsonCommand command,
ErrorInfo errorInfo) {
publishHookEvent(wrapper.entityName(), wrapper.actionName(), command, gson.
toJson(errorInfo));

}
private void exceptionWhenTheRequestAlreadyProcessed(CommandWrapper wrapper, String
idempotencyKey, boolean retry) {

CommandSource command = commandSourceService.findCommandSource(wrapper,
idempotencyKey);

Retry configuration for executeCommand

fineract.report.export.s3.bucket=§{FINERACT_REPORT_EXPORT_S3_BUCKET_NAME:}
fineract.report.export.s3.enabled=§{FINERACT_REPORT_EXPORT_S3_ENABLED:false}

fineract.jpa.statementLoggingEnabled=${FINERACT_STATEMENT_LOGGING_ENABLED:false}
fineract.database.defaultMasterPassword=${FINERACT_DEFAULT_MASTER_PASSWORD:fineract}

Jobs

SchedularWritePlatformService

A This service has a typo and should be called SchedulerWritePlatformService.

TBD

97

Retry-able service function processJobDetailForExecution

(name = "processJobDetailForExecution", fallbackMethod =
"fallbackProcessJobDetailForExecution")
public boolean process]obDetailForExecution(final String jobKey, final String
triggerType) {
boolean isStopExecution = false;
final ScheduledJobDetail scheduled]obDetail = this.scheduledJobDetailsRepository
.findByJobKeyWithLock(jobKey);
if (scheduledJobDetail.isCurrentlyRunning() || (triggerType.equals
(SchedulerServiceConstants.TRIGGER_TYPE_CRON)
&& scheduledJobDetail.getNextRunTime().after(new Date()))) {
isStopExecution = true;

}

final SchedulerDetail schedulerDetail = retriveSchedulerDetail();

if (triggerType.equals(SchedulerServiceConstants.TRIGGER_TYPE_CRON) &&

schedulerDetail.isSuspended()) {
scheduledJobDetail.setTriggerMisfired(true);
isStopExecution = true;

} else if (!lisStopExecution) {
scheduledJobDetail.setCurrentlyRunning(true);
scheduledJobDetail.setMismatchedJob(false);

}

this.scheduledJobDetailsRepository.save(scheduledJobDetail);

return isStopExecution;

Fallback function fallbackProcessJobDetailForExecution
("unused")

public boolean fallbackProcessJobDetailForExecution(Exception e) {
return false;

Retry configuration for processJobDetailForExecution
fineract.notification.user-notification-
system.enabled=${FINERACT_USER_NOTIFICATION_SYSTEM_ENABLED:true}
fineract.logging.json.enabled=${FINERACT _LOGGING_JSON_ENABLED:false}

fineract.sampling.enabled=${FINERACT_SAMPLING_ENABLED:false}

98

Loan

LoanWritePlatformService

TBD

Retry-able service function recalculatelnterest

final Map<String, Object> changes = new LinkedHashMap<>();

changes.put("transactionDate", command.stringValueOfParameterNamed(
"transactionDate"));

changes.put("transactionAmount”, command.stringValueOfParameterNamed(
"transactionAmount"));

changes.put("locale", command.locale());

changes.put("dateFormat", command.dateFormat());

changes.put(LoanApiConstants.externalldParameterName, txnExternalld);

Loan loan = this.loanAssembler.assembleFrom(loanId);

// Build loan schedule generator dto

LocalDate recalculateFrom = loan.
isInterestBearingAndInterestRecalculationEnabled() ? transactionDate : null;

final ScheduleGeneratorDTO scheduleGeneratorDTO = this.loanUtilService
.buildScheduleGeneratorDTO(loan, recalculateFrom, null);

// Domain rule validations

this.loanTransactionValidator.validateRefund(loan, loanTransactionType,
transactionDate, scheduleGeneratorDT0);

// Create payment details

final PaymentDetail paymentDetail = this.paymentDetailWritePlatformService
.createAndPersistPaymentDetail(command, changes);

// Create note

createNote(loan, command, changes);

// Initial transaction ids for journal entry generation

final List<Long> existingTransactionIds = loan.findExistingTransactionIds();

final List<Long> existingReversedTransactionIds = loan
.findExistingReversedTransactionIds();

// Create refund transaction(s)

Pair<LoanTransaction, LoanTransaction> refundTransactions =
loanAccountDomainService.makeRefund(loan, scheduleGeneratorDTO,

loanTransactionType, transactionDate, transactionAmount, paymentDetail,

txnExternalld);

LoanTransaction refundTransaction = refundTransactions.getlLeft();

LoanTransaction interestRefundTransaction = refundTransactions.getRight();

// Accrual reprocessing

if (loan.isInterestBearingAndInterestRecalculationEnabled()) {

loanAccrualsProcessingService.reprocessExistingAccruals(loan);
loanAccrualsProcessingService.processIncomePostingAndAccruals(loan);

Fallback function fallbackRecalculatelnterest

loanAccountDomainService.updateAndSavePostDatedChecksForIndividualAccount(loan,
refundTransaction);
if (interestRefundTransaction != null) {
loanAccountDomainService.updateAndSavePostDatedChecksForIndividualAccount
(loan, refundTransaction);

}

// Collateral management

loanAccountDomainService
.updateAndSaveloanCollateralTransactionsForIndividualAccounts(loan, refundTransaction);

if (interestRefundTransaction != null) {

loanAccountDomainService

.updateAndSaveloanCollateralTransactionsForIndividualAccounts(loan, refundTransaction);

}

// Raise business events

loanAccrualsProcessingService.processAccrualsOnInterestRecalculation(loan, loan
.isInterestBearingAndInterestRecalculationEnabled(),

false);

Retry configuration for recalculatelnterest

fineract.sampling.samplingRate=§{FINERACT_SAMPLING_RATE:1000}
fineract.sampling.sampledClasses=${FINERACT_SAMPLED_CLASSES:}
fineract.sampling.resetPeriodSec=${FINERACT_SAMPLING_RESET_PERIOD_IN_SEC:60}

fineract.module.investor.enabled=${FINERACT _MODULE INVESTOR_ENABLED:true}

Savings
SavingsAccountWritePlatformService
TBD

Retry-able service function postInterest

postInterestOnDate = transactionDate;

}

savingsAccountData = this.savingsAccountInterestPostingService.postInterest
(mc, today, isInterestTransfer,
isSavingsInterestPostingAtCurrentPeriodEnd,
financialYearBeginningMonth, postInterestOnDate, backdatedTxnsAllowedTill,
savingsAccountData);

if (!backdatedTxnsAllowedTill) {

100

List<SavingsAccountTransactionData> transactions = savingsAccountData
.getSavingsAccountTransactionData();
for (SavingsAccountTransactionData accountTransaction : transactions) {
if (accountTransaction.getId() == null) {
savingsAccountData.setNewSavingsAccountTransactionData
(accountTransaction);
}
}
}

savingsAccountData.setExistingTransactionIds(existingTransactionIds);
savingsAccountData.setExistingReversedTransactionlds
(existingReversedTransactionIds);

}

return savingsAccountData;

public CommandProcessingResult reverseTransaction(final Long savingsId, final Long
transactionld,
final boolean allowAccountTransferModification, final JsonCommand command) {

final boolean backdatedTxnsAllowedTill = this.savingAccountAssembler
.getPivotConfigStatus();

final boolean isBulk = command.booleanPrimitiveValueOfParameterNamed("isBulk");

final SavingsAccount account = this.savingAccountAssembler.assembleFrom(
savingsld, backdatedTxnsAllowedTill);

final SavingsAccountTransaction savingsAccountTransaction = this
.savingsAccountTransactionRepository
.findOneByIdAndSavingsAccountId(transactionId, savingsId);
if (savingsAccountTransaction == null) {
throw new SavingsAccountTransactionNotFoundException(savingsId,
transactionld);

}

if (!allowAccountTransferModification
&& this.accountTransfersReadPlatformService.isAccountTransfer
(transactionld, PortfolioAccountType.SAVINGS)) {
throw new PlatformServiceUnavailableException(
"error.msg.saving.account.transfer.transaction.update.not.allowed",
"Savings account transaction:" + transactionld +
as it involves in account transfer",
transactionId);

n

update not allowed

}

101

Fallback function fallbackPostInterest

boolean isInterestTransfer = false;

LocalDate postInterestOnDate = null;

final MathContext mc = MathContext.DECIMAL64;

boolean postReversals = false;

if (account.isBeforelLastPostingPeriod(transactionDate, backdatedTxnsAllowedTill))

final LocalDate today = DateUtils.getBusinessLocalDate();
account.postInterest(mec, today, isInterestTransfer,
isSavingsInterestPostingAtCurrentPeriodEnd, financialYearBeginningMonth,
postInterestOnDate, isInterestTransfer, postReversals);
} else {
final LocalDate today = DateUtils.getBusinessLocalDate();
account.calculateInterestUsing(mc, today, isInterestTransfer,
isSavingsInterestPostingAtCurrentPeriodEnd,
financialYearBeginningMonth, postInterestOnDate,
backdatedTxnsAllowedTill, postReversals);
}

Retry configuration for postInterest
fineract.insecure-http-client=§{FINERACT_INSECURE_HTTP_CLIENT:true}
fineract.client-connect-timeout=${FINERACT _CLIENT_CONNECT_TIMEOUT:30}
fineract.client-read-timeout=${FINERACT CLIENT READ TIMEOUT:30}
fineract.client-write-timeout=${FINERACT CLIENT WRITE TIMEOUT:30}

sql validation

102

Security

TBD

OAuth

Fineract has a (basic) OAuth2 support based on Spring Boot Security. Here’s how to use it:

Build

You must re-build the distribution JAR (or WAR) using the special -Psecurity=oauth flag:
./gradlew bootRun -Psecurity=oauth

Downloads from fineract.apache.org, or using e.g. the hub.docker.com/r/apache/fineract container
image, or on www.fineract.dev, this will not work, because they have not been built using this flag.

Previous versions of Fineract included a built-in authorisation server for issuing OAuth tokens.
However, as the spring-security-oauth2 package was deprecated and replaced by built-in OAuth
support in Spring Security, this is no longer supported as part of the package. Instead, you need to run
a separate OAuth authorization server (e.g. github.com/spring-projects/spring-authorization-server) or
use a 3rd-party OAuth authorization provider (en.wikipedia.org/wiki/List_of OAuth_providers)

This instruction describes how to get Fineract OAuth working with a Keycloak (keycloak.org) based
authentication provider running in a Docker container. The steps required for other OAuth providers
will be similar.

Set up Keycloak

1. From terminal, run: ‘'docker run -p 9000:8080 -e KEYCLOAK USER=admin -e
KEYCLOAK_PASSWORD=admin quay.io/keycloak/keycloak:15.0.2'

Go to URL 'http://localhost:9000/auth/admin’ and login with admin/admin
Hover your mouse over text "Master" and click on "Add realm"
Enter name "fineract" for your realm

Click on tab "Users" on the left, then "Add user" and create user with username "mifos"

S T A

Click on tab "Credentials" at the top, and set password to "password", turning "temporary" setting to
off

7. Click on tab "Clients" on the left, and create client with ID 'community-app'
8. In settings tab, set 'access-type' to 'confidential’ and enter 'localhost' in the valid redirect URISs.

9. In credentials tab, copy string in field 'secret' as this will be needed in the step to request the access

103

https://fineract.apache.org
https://hub.docker.com/r/apache/fineract
https://www.fineract.dev
https://github.com/spring-projects/spring-authorization-server
https://en.wikipedia.org/wiki/List_of_OAuth_providers
http://keycloak.org

token

Finally we need to change Keycloak configuration so that it uses the username as a subject of the
token:

Choose client 'community-app' in the tab 'Clients’

Go to tab 'Mappers' and click on 'Create’

Enter 'usernamelInSub' as 'Name'

Choose mapper type 'User Property'

SR A

Enter 'username' into the field 'Property' and 'sub' into the field 'Token Claim Name'. Choose 'String'
as 'Claim JSON Type'

You are now ready to test out OAuth:

Retrieve an access token from Keycloak

curl --location --request POST \
"http://localhost:9000/auth/realms/fineract/protocol/openid-connect/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'username=mifos' \

--data-urlencode 'password=password' \

--data-urlencode 'client_id=community-app' \

--data-urlencode 'grant_type=password' \

--data-urlencode 'client secret=<enter the client secret from credentials tab>'

The reply should contain a field 'access_token'. Copy the field’s value and use it in the API call below:

Invoke APIs and pass Authorization: bearer - header

curl --location --request GET \
"https://localhost:8443/fineract-provider/api/v1/offices' \

--header 'Fineract-Platform-TenantId: default' \

--header 'Authorization: bearer <enter the value of the access token field>'

e See also fineract.apache.org/legacy-docs/apiLive.htm#authentication_oauth

104

https://fineract.apache.org/legacy-docs/apiLive.htm#authentication_oauth

Testing

TBD

Cucumber

TBD

Cucumber Cheatsheet

Cucumber is a test framework based on Behavior-Driven Development (BDD). Tests are written in
plain text with very basic syntax rules. These rules form a mini language that is called Gherkin.

A specification resembles spoken language. This makes it ideal for use with non-technical people that
have domain specific knowledge. The emphasis of Cucumber lies on finding examples to describe your
test cases. The few keywords and language rules are easy to explain to anyone (compared JUnit for
example).

Keywords

The Gherkin language has the following keywords:

* Feature

* Rule

e Scenario Outline or Scenario Template
» Example or Scenario

» Examples or Scenarios
* Background

* Given

* And

* But

* When

* Then

There are a couple of additional signs used in Gherkin:

* | is as column delimiters in Examples tables

* with @ you can assign any kind of tags to categorize the specs (or e.g. relate them to certain Jira
tickets)

e f#fisused to indicate line comments

105

o The tag @ignore is used to skip tests. This is a somewhat arbitrary choice (we could use
any other tag to indicate temporarily disabled tests).

Each non-empty line of a test specification needs to start with one of these keywords. The text blocks
that follows the keywords are mapped to so called step definitions that contain the actual test code.

A typical Cucumber test specification written in Gherkin looks like this:

Feature: Template Service

@template
Scenario Qutline: Verify that mustache templates have expected results
Given A mustache template file <template>
Given A JSON data file <json>
When The user merges the template with data
Then The result should match the content of file <result>

Examples:
| template | json | result
hello.mustache | hello.json | hello.txt

|
| |
loan.mustache	loan.json	loan.html
array.loop.mustache	array.json	array.loop.txt
array.index.mustache	array.json	array.index.txt

The corresponding step definitions would look like this:

package org.apache.fineract.template.service;
import static org.junit.jupiter.api.Assertions.assertEquals;

import com.google.common.reflect.TypeToken;

import com.google.gson.Gson;

import com.google.gson.JsonElement;

import com.google.gson.JsonParser;

import io.cucumber.java8.En;

import java.io.IOException;

import java.lang.reflect.Type;

import java.nio.charset.StandardCharsets;

import java.util.Arraylist;

import java.util.List;

import java.util.Map;

import org.apache.commons.io.IO0Utils;

import org.apache.fineract.template.domain.Template;
import org.apache.fineract.template.domain.TemplateMapper;
import org.springframework.beans.factory.annotation.Autowired;

106

public class TemplateServiceStepDefinitions implements En {

private TemplateMergeService tms;
private String template;

private Map<String, Object> data;
private String result;

public TemplateServiceStepDefinitions() {
Given("/MA mustache template file (.*)$/", (String file) -> {
template = IOUtils.resourceToString("templates/" + file, StandardCharsets
.UTF_8,
TemplateServiceStepDefinitions.class.getClassLoader());

b

Given("/MA JSON data file (.*)$/", (String file) -> {
data = parse(IOUtils.resourceToString("templates/" + file, StandardCharsets
.UTF_8,
TemplateServiceStepDefinitions.class.getClassLoader()));

1)

When("The user merges the template with data", () -> {
result = compile(template, data);

b

Then("/AThe result should match the content of file (.*)$/", (String file) -> {
String expected = IOUtils.resourceToString("results/" + file,
StandardCharsets.UTF_8,
TemplateServiceStepDefinitions.class.getClassLoader());
assertEquals(expected, result);
1)
}

private String compile(String templateText, Map<String, Object> scope) throws
IOException {
List<TemplateMapper> mappers = new ArraylList<>();
Template template = new Template("TemplateName", templateText, null, null,
mappers);
return tms.compile(template, scope);

}

private Map<String, Object> parse(String data) {
Gson gson = new Gson();
Type ssMap = new TypeToken<Map<String, Object>>() {}.getType();

107

JsonElement json = JsonParser.parseString(data);
return gson.fromJson(json, ssMap);

}
}
o This example is an actual test specification that you can find in the fineract-provider
module.
Feature

This keyword is used to group scenarios and to group related scenarios. All Gherkin specifications
must start with the word Feature.

Descriptions

A description is any non-empty line that doesn’t start with a keyword. Descriptions can be placed
under the keywords:

* Feature

* Rule

* Background

» Example/Scenario
* Scenario Outline

Rule

Rule is used to group multiple related scenarios together.

Example/Scenario

This is the important part of the specification as it should describe the business logic in more detail
with the usage of steps (usually Given, When, Then)

Steps

TBD

Given

TBD

When

TBD

108

Then

TBD

And, But

TBD

Background

TBD

Scenario Outline

TBD

Examples/Tables

TBD

Outlook

As a proof of concept we’ve converted all unit tests in fineract-provider into Cucumber tests. The more
interesting part starts when we’ll attack the integration tests with over 400 mostly business logic
related tests. These tests fit very well in Cucumber’s test specification structure (a lot of if-then-else or
in Gherkin: Given-When-Then). Migrating all tests will take a while, but we would already recommend
trying to implement tests as Cucumber specifications. It should be relatively easy to convert these tests

into the new syntax.

Hopefully this will motivate even more people from the broader Fineract community to participate in
the project by sharing their domain specific knowledge as Cucumber specifications. Specifications are

written in English (although not a technical requirement).

o Have a look at the specifications in fineract-provider for an initial inspiration. For

more information please see cucumber.io/docs

Unit Testing

TBD

Integration Testing

TBD

109

https://cucumber.io/docs

Fineract Documentation Guide

TBD

File and Folder Layout

The general rules are

» keep things as flat as possible (avoid sub-folders as much as possible)

* DRY (don’t repeat yourself): don’t copy and paste code pieces, use AsciiDoc’s include feature and
reference files/-sections from the project folder

» images are located in fineract-doc/src/docs/en/images (or sub-folders)

 diagrams are located in fineract-doc/src/docs/en/diagrams (or sub-folders)

» specific chapters are located in fineract-doc/src/docs/en/chapters

* every chapter has its own folder and at least one index.adoc file

* it’'s recommended to keep the chapters flat (i. e. no sub-folders in the chapter folders)

* it’s recommended to create one file per chapter section; like that you can re-arrange sections
very easily in the index.adoc file

o These rules are not entirely set in stone and could be modified if necessary. If you see
any issues then please report them on the mailing list or open a Jira ticket.

AsciiDoc

Cheatsheet

You can find the definitive manual on AsciiDoc syntax at AsciiDoc documentation. To help people get
started, however, here is a simpler cheat sheet.

AsciiDoc vs Asciidoctor (format vs tool)

When we refer to AsciiDoc then we mean the language or format that this documentation is written in.
AsciiDoc is a markup language similar to Markdown (but more powerful and expressive) designed for
technical documentation. You don’t need necessarily any specialized editors or tools to write your
documentation in AsciiDoc, a plain text editor will do, but there are plenty of choices that give you a
better experience (in this documentation we describe the basic usage with AsciiDoc plugins for Intelli],
Eclipse and VSCode).

Asciidoctor on the other hand is the command line tool we use to transform documents written in
AsciiDoc into HTML and PDF (Epub3 and Docbook are also available). There are three variants
available:

110

mailto:dev@fineract.apache.org
https://issues.apache.org
https://docs.asciidoctor.org/asciidoc/latest

» Asciidoctor (written in Ruby)
* Asciidoctor.js (written in JavaScript, often used for browser previews)

 Asciidoctor] (Java lib that integrates the Ruby implementation via JRuby, e. g. the Asciidoctor Gradle
plugin is based on that)

Sometimes you will still find documentation related to the original incarnation of

o AsciiDoc/tor (written in Python). The format evolved quite a bit since then and the
tools try to maintain a certain degree of backward compatibility, but there is no
guarantee. We prefer to use the latest language specs as documented here.

Basic AsciiDoc Syntax

Bold

Put asterisks around text to make it bold.

0 More info at docs.asciidoctor.org/asciidoc/latest/text/bold

Italics

Use underlines on either side of a string to put text into italics.

o More info at docs.asciidoctor.org/asciidoc/latest/text/italic

Headings

Equal signs (=) are used for heading levels. Each equal sign is a level. Each page can only have one top
level (i.e., only one section with a single =).

Levels should be appropriately nested. During the build, validation occurs to ensure that level 3s are
preceded by level 2s, level 4s are preceded by level 3s, etc. Including out-of-sequence heading levels
(such as a level 3 then a level 5) will not fail the build, but will produce an error.

o More info at docs.asciidoctor.org/asciidoc/latest/sections/titles-and-levels/

Code Examples

Use backticks * for text that should be monospaced, such as code or a class name in the body of a
paragraph.

o More info at docs.asciidoctor.org/asciidoc/latest/text/monospace/

Longer code examples can be separated from text with source blocks.
These allow defining the syntax being used so the code is properly highlighted.

111

https://docs.asciidoctor.org/asciidoc/latest
https://docs.asciidoctor.org/asciidoc/latest/text/bold
https://docs.asciidoctor.org/asciidoc/latest/text/italic
https://docs.asciidoctor.org/asciidoc/latest/sections/titles-and-levels/
https://docs.asciidoctor.org/asciidoc/latest/text/monospace/

Example Source Block

[source, xml]
<field name="id" type="string" indexed="true" stored="true" required="true"
multiValued="false" />

If your code block will include line breaks, put 4 hyphens (----) before and after the entire block.

e More info at docs.asciidoctor.org/asciidoc/latest/verbatim/source-blocks/

Source Block Syntax Highlighting

The HTML output uses Rouge to add syntax highlighting to code examples. This is done by adding the
language of the code block after the source, as shown in the above example source block (xml in that
case).

Rouge has a long selection of lexers available. You can see the full list at github.com/rouge-ruby/rouge/
wiki/List-of-supported-languages-and-lexers. Use one of the valid short names to get syntax
highlighting for that language.

Ideally, we will have an appropriate lexer to use for all source blocks, but that’s not possible.
When in doubt, choose text, or leave it blank.

Importing Code Snippets from Other Files

The build system has the ability to "include" snippets located in other files— even non-AsciiDoc files
such as *.java source code files.

We’ve configured a global attribute called {rootdir} that you can use to reference these files
consistently from Fineract’s project root folder.

Snippets are bounded by tag comments placed at the start and end of the section you would like to
import. Opening tags look like: // tag::snippetName[]. Closing tags follow the format: //
end: :snippetNamel[].

Snippets can be inserted into an .adoc file using an include directive, following the format:
include::{rootdir}/<directory-under-root-folder>/<file-name>[tag=snippetName].

You could also use relative paths to reference include files, but it is preferred to
o always use the root folder as a starting point. Like this you can be sure that the
preview in your editor of choice works.

For example, if we wanted to highlight a specific section of the following Cucumber test definition

(more on that in section Cucumber Testing) ClasspathDuplicatesStepDefinitions.java file located under
fineract-provider/src/test/java/org/apache/fineract/infrastructure/classpath/.

112

https://docs.asciidoctor.org/asciidoc/latest/verbatim/source-blocks/
https://github.com/rouge-ruby/rouge/wiki/List-of-supported-languages-and-lexers
https://github.com/rouge-ruby/rouge/wiki/List-of-supported-languages-and-lexers

[source,java,indent=0]

include::{rootdir}/fineract-
provider/src/test/java/org/apache/fineract/infrastructure/classpath/ClasspathDuplicatesSt
epDefinitions.java[tag=then]

For more information on the include directive, see the documentation at docs.asciidoctor.org/asciidoc/
latest/directives/include.

Block Titles

Titles can be added to most blocks (images, source blocks, tables, etc.) by simply prefacing the title with
a period (.). For example, to add a title to the source block example above:

.Example ID field

[source, xml]

<field name="id" type="string" indexed="true" stored="true" required="true"
multiValued="false" />

o More info at docs.asciidoctor.org/asciidoc/latest/blocks/add-title

Links

Link to Sites on the Internet

When converting content to HTML, Asciidoctor will automatically render many link types (such as
http: and mailto:) without any additional syntax. However, you can add a name to a link by adding the
URI followed by square brackets:

http://fineract.apache.org/[Fineract Website]

o More info at docs.asciidoctor.org/asciidoc/latest/macros/url-macro

Link to Other Pages/Sections of the Guide

A warning up front, linking to other pages can be a little painful. There are slightly different rules
depending on the type of link you want to create, and where you are linking from. The build process
includes a validation for internal or inter-page links, so if you can build the docs locally, you can use
that to verify you constructed your link properly. With all the below examples, you can add text to
display as the link title by putting the display text in brackets after the link, as in:

113

https://docs.asciidoctor.org/asciidoc/latest/directives/include
https://docs.asciidoctor.org/asciidoc/latest/directives/include
https://docs.asciidoctor.org/asciidoc/latest/blocks/add-title
https://docs.asciidoctor.org/asciidoc/latest/macros/url-macro

xref:indexing-guide:schema-api.adoc#modify-the-schema[Modify the Schema]

You can also use the title of the Page or Section you are linking to by using an empty display text.
This is useful in case the title of the page or section changes. In that case you won’t need to change the
display text for every link that refers to that page/section.

See an example below:

xref:indexing-guide:schema-api.adoc#modify-the-schemal]

Link to a Section on the Same Page

To link to an anchor (or section title) on the same page, you can simply use double angle brackets (<<
>>) around the anchor/heading/section title you want to link to. Any section title (a heading that starts
with equal signs) automatically becomes an anchor during conversion and is available for deep
linking.

Example

If I have a section on a page that looks like this (from process.adoc):

== Steps

Common parameters for all steps are:

To link to this section from another part of the same process.adoc page, I simply need to put the
section title in double angle brackets, as in:

See also the <<Steps>> section.

The section title will be used as the display text; to customize that add a comma after the the section
title, then the text you want used for display.

o More info at docs.asciidoctor.org/asciidoc/latest/macros/xref/#internal-cross-
references
Link to a Section with an Anchor ID

When linking to any section (on the same page or another one), you must also be aware of any pre-
defined anchors that may be in use (these will be in double brackets, like [[]]).
When the page is converted, those will be the references your link needs to point to.

114

https://docs.asciidoctor.org/asciidoc/latest/macros/xref/#internal-cross-references
https://docs.asciidoctor.org/asciidoc/latest/macros/xref/#internal-cross-references

Example

Take this example from configsets-api.adoc:

[[configsets-create]]
== (reate a ConfigSet

To link to this section, there are two approaches depending on where you are linking from:

* From the same page, simply use the anchor name: <<configsets-create>>.

 From another page, use the page name and the anchor name: xref:configuration-
guide:configsets-api.adoc#iconfigsets-create[].

Link to Another Page

To link to another page or a section on another page, you must refer to the full filename and refer to
the section you want to link to.

When you want to refer the reader to another page without deep-linking to a section, Asciidoctor
allows this by merely omitting the # and section id.

Example

To construct a link to the process.adoc page, we need to refer to the file name (process.adoc), as well
as the module that the file resides in (release/).

It’s preferred to also always use the page name to give the reader better context for where the link
goes.
Asin:

For more about upgrades, see xref:release:process.adoc[Fineract Release Process].

Link to Another Page in the same folder

If the page that contains the link and the page being linked to reside in the same module, there is no
need to include the module name after xref:

Example

To construct a link to the process-step@1.adoc page from process.adoc page, we do not need to
include the module name because they both reside in the upgrade-notes module.

For more information on the first step of the release process, see the section
\xref:process-step@1.adoc[].

115

Link to a Section on Another Page

Linking to a section is the same conceptually as linking to the top of a page, you just need to take a little
extra care to format the anchor ID in your link reference properly.

When you link to a section on another page, you must make a simple conversion of the title into the
format of the section ID that will be created during the conversion. These are the rules that transform
the sections:

Example
TBD

o More info at docs.asciidoctor.org/asciidoc/latest/macros/inter-document-xref

Ordered and Unordered Lists

AsciiDoc supports three types of lists:

e Unordered lists
e Ordered lists

e Labeled lists

Each type of list can be mixed with the other types. So, you could have an ordered list inside a labeled
list if necessary.

Unordered Lists

Simple bulleted lists need each line to start with an asterisk (*). It should be the first character of the
line, and be followed by a space.

0 More info at docs.asciidoctor.org/asciidoc/latest/lists/unordered

Ordered Lists

Numbered lists need each line to start with a period (.). It should be the first character of the line, and
be followed by a space. This style is preferred over manually numbering your list.

o More info at docs.asciidoctor.org/asciidoc/latest/lists/ordered

Description Lists

These are like question & answer lists or glossary definitions.

Each line should start with the list item followed by double colons (::), then a space or new line.
Labeled lists can be nested by adding an additional colon (such as :::, etc.). If your content will span
multiple paragraphs or include source blocks, etc., you will want to add a plus sign (+) to keep the
sections together for your reader.

116

https://docs.asciidoctor.org/asciidoc/latest/macros/inter-document-xref
https://docs.asciidoctor.org/asciidoc/latest/lists/unordered
https://docs.asciidoctor.org/asciidoc/latest/lists/ordered

We prefer this style of list for parameters because it allows more freedom in how you

@ present the details for each parameter. For example, it supports ordered or unordered

- lists inside it automatically, and you can include multiple paragraphs and source
blocks without trying to cram them into a smaller table cell.

o More info at docs.asciidoctor.org/asciidoc/latest/lists/description

Images

There are two ways to include an image: inline or as a block. Inline images are those where text will
flow around the image. Block images are those that appear on their own line, set off from any other
text on the page. Both approaches use the image tag before the image filename, but the number of
colons after image define if it is inline or a block. Inline images use one colon (image:), while block
images use two colons (image::). Block images automatically include a caption label and a number
(such as Figure 1). If a block image includes a title, it will be included as the text of the caption.
Optional attributes allow you to set the alt text, the size of the image, if it should be a link, float and
alignment. We have defined a global attribute {imagesdir} to standardize the location for all images
(fineract-doc/src/docs/en/images).

0 More info at docs.asciidoctor.org/asciidoc/latest/macros/images

Tables

Tables can be complex, but it is pretty easy to make a basic table that fits most needs.

Basic Tables

The basic structure of a table is similar to Markdown, with pipes (|) delimiting columns between rows:

| col 1T row 1 | col 2 row 1|
| col 1 row 2 | col 2 row 2|

Note the use of |=== at the start and end. For basic tables that’s not exactly required, but it does help to
delimit the start and end of the table in case you accidentally introduce (or maybe prefer) spaces
between the rows.

Header Rows

To add a header to a table, you need only set the header attribute at the start of the table:

117

https://docs.asciidoctor.org/asciidoc/latest/lists/description
https://docs.asciidoctor.org/asciidoc/latest/macros/images

[options="header"]

header col 1	header col 2
col 1T row 1	col 2 row 1
col 1 row 2	col 2 row 2

Defining Column Styles
If you need to define specific styles to all rows in a column, you can do so with the attributes.

This example will center all content in all rows:

[cols="2*\" options="header"]

header col 1	header col 2
col 1 row 1	col 2 row 1
col 1 row 2	col 2 row 2

Alignments or any other styles can be applied only to a specific column. For example, this would only
center the last column of the table:

[cols="2*,A" options="header"]

header col 1	header col 2
col 1 row 1	col 2 row 1
col 1 row 2	col 2 row 2

Many more examples of formatting:
o * Columns: docs.asciidoctor.org/asciidoc/latest/tables/add-columns/

* Cells and rows: docs.asciidoctor.org/asciidoc/latest/tables/add-cells-and-rows/

More Options

Tables can also be given footer rows, borders, and captions. You can determine the width of columns,
or the width of the table as a whole.

CSV or DSV can also be used instead of formatting the data in pipes.

e More info at docs.asciidoctor.org/asciidoc/latest/tables/build-a-basic-table/

118

https://docs.asciidoctor.org/asciidoc/latest/tables/add-columns/
https://docs.asciidoctor.org/asciidoc/latest/tables/add-cells-and-rows/
https://docs.asciidoctor.org/asciidoc/latest/tables/build-a-basic-table/

Admonitions (Notes, Warnings)

AsciiDoc supports several types of callout boxes, called "admonitions™:

* NOTE
* TIP

IMPORTANT

CAUTION

WARNING

It is enough to start a paragraph with one of these words followed by a colon (such as NOTE:). When it is
converted to HTML, those sections will be formatted properly - indented from the main text and
showing an icon inline.

You can add titles to admonitions by making it an admonition block. The structure of an admonition

block is like this:

.Title of Note
[NOTE]

Text of note

In this example, the type of admonition is included in square brackets ([NOTE]), and the title is prefixed
with a period. Four equal signs give the start and end points of the note text (which can include new
lines, lists, code examples, etc.).

e More info at docs.asciidoctor.org/asciidoc/latest/blocks/admonitions/

STEM Notation Support

We have set up the Ref Guide to be able to support STEM notation whenever it’s needed.
The AsciiMath syntax is supported by default, but LaTeX syntax is also available.

To insert a mathematical formula inline with your text, you can simply write:
stem:[a//b]

Math]Jax.js will render the formula as proper mathematical notation when a user loads the page. When
the above example is converted to HTML, it will look like this to a user: a//b

To insert LaTeX, preface the formula with latexmath instead of stem:

119

https://docs.asciidoctor.org/asciidoc/latest/blocks/admonitions/
http://asciimath.org/

latexmath:[tp \leq 1 - (1 - sim™{rows})*{bands}]

Long formulas, or formulas which should to be set off from the main text, can use the block syntax
prefaced by stem or latexmath:

[stem]
+H+
sqrt(3x-1)+(14x)"2 < y
+H++
or for LaTeX:
[latexmath]
HHt
[tp \leq T - (1 - sim™rows})”*{bands}]
+HH+
o More info at docs.asciidoctor.org/asciidoc/latest/stem/stem
Diagrams
TBD
0 docs.asciidoctor.org/diagram-extension/latest
PlantUML Cheatsheet
TBD
o plantuml.com
C4 Cheatsheet
TBD

0 cdmodel.com and github.com/plantuml-stdlib/C4-PlantUML

Archimate Cheatsheet

TBD

120

https://docs.asciidoctor.org/asciidoc/latest/stem/stem
https://docs.asciidoctor.org/diagram-extension/latest
https://plantuml.com
https://c4model.com
https://github.com/plantuml-stdlib/C4-PlantUML

www.opengroup.org/archimate-forum/archimate-overview
archimate-diagram

Vega Cheatsheet

TBD

e vega.github.io/vega-lite/

Editor
TBD
Intelli] IDEA

Asciidoc

See: plugins.jetbrains.com/plugin/7391-asciidoc

PlantUML

See: plugins.jetbrains.com/plugin/7017-plantuml-integration
Eclipse

Asciidoc

See: marketplace.eclipse.org/content/asciidoctor-editor

PlantUML

See: plantuml.com/eclipse

VSCode

Asciidoc

See: marketplace.visualstudio.com/items?itemName=asciidoctor.asciidoctor-vscode

PlantUML

See: marketplace.visualstudio.com/items?itemName=jebbs.plantuml

and

plantuml.com/

121

https://www.opengroup.org/archimate-forum/archimate-overview
https://plantuml.com/archimate-diagram
https://plantuml.com/archimate-diagram
https://vega.github.io/vega-lite/
https://plugins.jetbrains.com/plugin/7391-asciidoc
https://plugins.jetbrains.com/plugin/7017-plantuml-integration
https://marketplace.eclipse.org/content/asciidoctor-editor
https://plantuml.com/eclipse
https://marketplace.visualstudio.com/items?itemName=asciidoctor.asciidoctor-vscode
https://marketplace.visualstudio.com/items?itemName=jebbs.plantuml

Antora

See: antora.org/

TBD

122

https://antora.org/

Releases

How to Release Apache Fineract documents the process how we make the source code that is available
here in this Git repository into a binary release tar.gz available on fineract.apache.org.

1 23 4 56 7 8,9 10111213 141516 17

IEHeads up email
| | Open release branch

L}QPrepare distribution for staging
qvme for distribution on staging
Prepare distribution for release
[] Announce release
1 23 456 78910111213 141516 17

Figure 4. Release Schedule

Configuration

Before you can start using the Fineract release plugin to create releases you have to configure and
setup a couple of things first.

 All official communication concerning releases happens on the mailing list. Every release manager
needs to be a member of and engaging on the mailing list for credibility.

* Make sure you have edit permissions on the Apache Confluence Wiki

* You need full permissions on Apache JIRA to be able to move issues to the next release

* Git committer privileges to be allowed to create tags and the release branch

» Familiarity with building Fineract locally and creating release distributions is required

* You need to be a member of the PMC to be able to upload release artifacts; this task can be
delegated though

* A general Familiarity with PGP/GPG is recommended (at least to setup your keypairs), but the
release plugin does most of the heavy lifting

* Make sure to read the release plugin documentation for troubleshooting

Secrets

TBD

Infrastructure Team

A couple of secrets for third party services are automatically configured by the infrastructure team at

123

https://cwiki.apache.org/confluence/x/DRwIB
http://fineract.apache.org
mailto:dev@fineract.apache.org
https://cwiki.apache.org/confluence/display/FINERACT
https://issues.apache.org/jira

The Apache Foundation for the Fineract Github account. At the moment this includes environment
variables for:

* Github token (e. g. to publish Github Pages, use the Github API in Github Actions)

* Docker Hub token (to publish our Docker images)

» Sonar Cloud token (for our code quality reports)
See also:

* infra.apache.org/github-pages.html

» cwiki.apache.org/confluence/display/INFRA/Github+Actions+to+DockerHub
» github.com/apache/jmeter-site-preview

« github.com/apache/fineract-site

 github.com/apache/systemds-website/blob/main/.asf.yaml

Lastpass

It seems that Apache has some kind of org account or similar. Popped up a couple of times in the
infrastructure documentation.

TBD

1Password

Other Fineract development related secrets, e. g. for deployments of demo systems on Google Cloud,
AWS etc. are managed in a team account at 1Password. At the moment the following committers are
members of the 1Password team account:

« Ed Cable

* Michael Vorburger

* Petri Tuomola

Arnold Galovics

* Aleksandar Vidakovic

o If you need access or have any questions related to those secrets then please reach out
to one of the team members.

GPG

Generate GPG key pairs if you don’t already have them and publish them. Please use your Apache
email address when creating your GPG keypair. If you already have configured GPG and associated
your keypair with a non-Apache email address then please consider creating a separate one just for all

124

https://infra.apache.org/github-pages.html
https://cwiki.apache.org/confluence/display/INFRA/Github+Actions+to+DockerHub
https://github.com/apache/jmeter-site-preview
https://github.com/apache/fineract-site
https://github.com/apache/systemds-website/blob/main/.asf.yaml
mailto:edcable@apache.org
mailto:vorburger@apache.org
mailto:ptuomola@apache.org
mailto:arnold@apache.org
mailto:aleks@apache.org

things related to Fineract (or Apache in general).
Instructions:
1. Check your GPG version:

Input GPG version

gpg --version

Output GPG version

gpg (GnuPG) 2.2.27

libgcrypt 1.9.4

Copyright (C) 2021 Free Software Foundation, Inc.

License GNU GPL-3.0-or-later <https://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Home: /home/aleks/.gnupg

Supported algorithms:

Pubkey: RSA, ELG, DSA, ECDH, ECDSA, EDDSA

Cipher: IDEA, 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH,
CAMELLIA128, CAMELLIA192, CAMELLIA256

Hash: SHA1, RIPEMD16@, SHA256, SHA384, SHA512, SHA224

Compression: Uncompressed, ZIP, ZLIB, BZIP2

° The insecure hash algorithm SHA1 is still supported in version 2.2.27. SHA1 is
obsolete and you don’t want to use it to generate your signature.

2. Generate your GPG key pair:

Input generate GPG key pair

gpg --full-gen-key

125

Output generate GPG key pair (step 1: key type selection)

gpg (GnuPG) 2.2.27; Copyright (C) 2021 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
(14) Existing key from card
Your selection?

There are four options. The default is to use RSA to create the key pair. Good enough for us.

Output generate GPG key pair (step 2: key length selection)

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)

The default key length is 2048 bits. 1024 is obsolete and a longer 4096 RSA key will not provide
more security than 2048 RSA key. Use the default.

Output generate GPG key pair (step 3: validity selection)

Requested keysize is 2048 bits

Please specify how long the key should be valid.
0 = key does not expire

<n> = key expires in n days

<n>w = key expires in n weeks

<n>m = key expires in n months

<n>y = key expires in n years

Key is valid for? (0)2y

2 years for the validity of your keys should be fine. You can always update the expiration time later
on.

Output generate GPG key pair (step 4: confirmation)

Key expires at Sun 16 Apr 2024 08:10:24 PM UTC
Is this correct? (y/N)y

Confirm if everything is correct.

126

Output generate GPG key pair (step 5: provide user details)

GnuPG needs to construct a user ID to identify your key.
Real name: Aleksandar Vidakovic

Email address: aleks@apache.org

Comment:

Provide your user details for the key. This is important because this information will be included in
our key. It’s one way of indicating who is owner of this key. The email address is a unique identifier
for a person. You can leave Comment blank.

Output generate GPG key pair (step 6: user ID selection)

You selected this USER-ID:
"Aleksandar Vidakovic <aleks@apache.org>"
Change (N)ame, (C)omment, (E)mail or (0)kay/(Q)uit? O

Select Okay.

After the selection of your user ID GPG will ask for a passphrase to protect your private key. Maybe
time to open your password manager and generate a secure one and save it in your vault. Once
you’ve confirmed your password GPG will start to generate your keys.

o Don’t lose your private key password. You won’t be able to unlock and use your
private key without it.

Output generate GPG key pair (step 7: gpg key pair generation)
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the

disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

Generating the GPG keys will take a while.

127

Output generate GPG key pair (step 8: gpg key pair finished)

gpg: key 7890ABCD marked as ultimately trusted @

gpg: directory '/home/aleks/.gnupg/openpgp-revocs.d' created

gpg: revocation certificate stored as '/home/aleks/.gnupg/openpgp-
revocs.d/ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD.rev' @

public and secret key created and signed.

gpg: checking the trustdb

gpg: marginals needed: 3 completes needed: 1 trust model: PGP

gpg: depth: @ valid: 1 signed: @ trust: 0-, @q, On, Om, 0f, Tu

gpg: next trustdb check due at 2024-04-16

pub rsa2048/7890ABCD 2022-04-16 [S] [expires: 2024-04-16] ®

Key fingerprint = ABCD EFGH IJKL MNOP QRST UVWX YZ12 3456 7890 ABCD @
uid [ultimate] Aleksandar Vidakovic <aleks@apache.org> ®

sub rsa2048/4FGHIJ56 2022-04-16 [] [expires: 2024-04-16]

@ GPG created a unique identifier in HEX format for your public key. When someone wants to
download your public key, they can refer to it either with your email address or this HEX value.

@ GPG created a revocation certificate and its directory. You should never share your private key.
If your private key is compromised, you need to use your revocation certificate to revoke your
key.

® The public key is 2048 bits using RSA algorithm and shows the expiration date of 16 Apr 2024.
The public key ID 7890ABCD matches the last 8 bits of key fingerprint.

@ The key fingerprint (ABCD EFGH IJKL MNOP QRST UVWX YZ12 3456 7890 ABCD) is a hash of your
public key.

® Your name and your email address are shown with information about the subkey.

Now you can find that there are two files created under ~/.gnupg/private-keys-v1.d/ directory. These
two files are binary files with .key extension.

3. Export your public key:

gpg --armor --export aleks@apache.org > pubkey.asc

4. Export Your Private Key:

gpg --export-secret-keys --armor aleks@apache.org > privkey.asc

5. Protect Your Private Key and Revocation Certificate

Your private key should be kept in a safe place, like an encrypted flash drive. Treat it like your
house key. Only you can have it and don’t lose it. And you must remember your passphrase,

128

otherwise you can’t unlock your private key.

You should protect your revocation certificate. Anyone in possession of your revocation certificate,
could immediately revoke your public/private key pair and generate fake ones.

o Please contact a PMC member to add your GPG public key in Fineract’s Subversion
repository. This is necessary to be able to validate published releases.

. Upload your GPG key to a keyserver:
gpg --send-keys ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD

Before doing this, make sure that your default keyserver is hkp://keyserver.ubuntu.com/. You can
do this by changing the default keyserver in ~/.gnupg/dirmngr.conf:

keyserver hkp://keyserver.ubuntu.com/
Alternatively you can provide the keyserver with the send command:

gpg --keyserver 'hkp://keyserver.ubuntu.com:11371"' --send-keys
ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD

Another option to publish your key is to submit an armored public key directly at
keyserver.ubuntu.com/. You can create the necessary data with this command by providing the
email address that you used when you created your key pair:

gpg --armor --export aleks@apache.org

Output:

mQINBF81Gq0BEADGRqeSs0oNDc1sV3L9sQ34KhmoQrACnMYGztx33TD98aWplul+
jm8uGtMmBus4D]]Jap1bVQ1oMehw2mscmDHpfIjLNZ/q+vUqbExx1/CER7XvLryN
<=== GO ==2=2
2nHBuBftxDRpDHQ+05XYwSDSTDMmthPjx@vIGBHAK1k08XK99e01A6/0YLV2SMKp
gXXeWjafxBmHT1cM8hoBZBYzgTu9nK5Un11WunfaHXiCBG40QQ==

=85/F

= Email

129

https://keyserver.ubuntu.com/

Official communication related to releases needs to be done with an Apache email address. The
Apache Foundation doesn’t provide any real email inboxes anymore and just relays emails to your
configured private account (GMalil etc.).

o At the moment we are supporting only GMail accounts. Please let us know if you have
other configuration recipes for other email providers.

GMail

You can configure your GMail account and add another profile to use the Apache relay server if you
need to send official messages. Please follow these instructions:

TBD.
See also: Send mail from another address without "on behalf of"

To be able to send emails via SMTP with your GMail account you probably need to create an app
password. Please follow these instructions:

1. Go to your Google Account.

2. Select Security.

w

Under "Signing in to Google," select App Passwords. You may need to sign in. If you don’t have this
option, it might be because:

2-Step Verification is not set up for your account.
2-Step Verification is only set up for security keys.
Your account is through work, school, or other organization.

You turned on Advanced Protection.

® N e a B

At the bottom, choose Select app and choose the app you’re using and then Select device and
choose the device you’re using and then Generate.

9. Follow the instructions to enter the App Password. The App Password is the 16-character code in
the yellow bar on your device.

10. Tap Done.
See also: Google Support: Sign in with App Passwords for more details.

Gradle

TBD

User Properties

There are a couple of properties that contain committer/release manager related secrets. Please add
the following properties to your personal global Gradle properties (you will find them at

130

https://gmail.googleblog.com/2009/07/send-mail-from-another-address-without.html
https://support.google.com/accounts/answer/185833?p=InvalidSecondFactor&visit_id=637856439524128323-869822459&rd=1

~/.gradle/gradle.properties in your home folder).

fineract.config.gnupg.keyName=ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD™D
fineract.config.gnupg.password=******
fineract.config.gnupg.publicKeyring=~/.gnupg/pubring.kbx®
fineract.config.gnupg.secretKeyring=~/.gnupg/secring.gpg
fineract.config.smtp.username=aleks@gmail.com ®
fineract.config.smtp.password=******

fineract.config.name=Aleksandar Vidakovic
fineract.config.email=aleks@apache.org

fineract.config.username=aleks @

fineract.config.password=******

@ Make sure you use the full GPG key name (you can list yours via gpg --list-secret-keys --keyid
-format=1ong)

@ GnuPG has its own kbx format to store the public key ring. At the moment we are only supporting
this format

® Currently we only have instructions for GMail

@ Apache committer credentials

° Never add any personal secrets in the project gradle.properties. Double check that
you are not accidentally committing them to Git!

Release Plugin

Creating Apache Fineract releases was a very manual and tedious procedure before we created the
Gradle release plugin. It was easy - even with documentation - to forget a detail. Some ideas are
borrowed from the excellent JReleaser tool. Unfortunately at the moment we can’t use it for the full
release process. Being an Apache project we have certain requirements that are not fully covered by
JReleaser

Release Plugin Configuration

config {
username = "${findProperty('fineract.config.username")}"
password = "${findProperty('fineract.config.password")}"
doc {

url = 'git@qgithub.com:apache/fineract-site.qgit’
directory = "${System.getProperty("java.io.tmpdir")}/fineract-site"
branch = "asf-site"
}
git {
dir = "${projectDir.absolutePath}/.git"

131

https://jreleaser.org
https://jreleaser.org

sections = [

[
section: "user",
name: "name",
value: "${findProperty('fineract.config.name')}",
1,
[
section: "user",
name: "email",
value: "${findProperty('fineract.config.email')}",
1,
[
section: "user",
name: "signingkey",
value: "${findProperty('fineract.config.gnupg.keyName')}",
1,
[
section: "commit",
name: "gpgsign",
value: "true",
I
]
}
template {
templateDir = "${projectDir}/buildSrc/src/main/resources"
}
9pg {
keyName = "${findProperty('fineract.config.gnupg.keyName")}"
publicKeyring = "${findProperty('fineract.config.gnupg.publicKeyring")}"
secretKeyring = "${findProperty('fineract.config.gnupg.secretKeyring")}"
password = "${findProperty('fineract.config.gnupg.password")}"
}
smtp {
host = 'smtp.gmail.com’
username = "${findProperty('fineract.config.smtp.username')}"
password = "${findProperty('fineract.config.smtp.password")}"
tls = true
ssl = true
}
subversion {
username = "${findProperty('fineract.config.username")}"
password = "${findProperty('fineract.config.password")}"
revision = "HEAD'
}
jira {

url = "https://issues.apache.org/jira/rest/api/2/'
username = "${findProperty('fineract.config.username')}"
password = "${findProperty('fineract.config.password"')}"

132

}

confluence {
url = "https://cwiki.apache.org/confluence/rest/api/’
username = "${findProperty('fineract.config.username')}"
password = "${findProperty('fineract.config.password"')}"

Release Process
TODO:

 create "Jira anchor ticket" with all issues linked that are going into this release.
* maintenance: continuously update the "Jira anchor ticket" to make sure we catch all ticket changes

* maintenance: list tickets that have discrepancies, e. g. tickets still open while associated PR merged,
ticket on wrong version (i. e. associated PR already merged before with another release).

TBD

é Consider the Gradle plugin commands an experimental feature!

133

Fineract Release Process

(Step 0: Select release manager)

(Step 1: Send heads-up

email to dev mailing Iist)

Step 2: Clean up JIRA

(Step 3: Create a release branch)

(Step 4: Freeze JIRA version)

(Continue with development on 'develop’ branch)

1-2 weeks

(Step 5: Create release tag)

(Step 6: Create a distribution)

(Step 7: Sign the distribution artifacls)

(Step 8: Upload distribution artifacts to staging environment)

(Step 9: Verify distribution in staging environment)

(Step 10: Start voting on the dev mailing Iist)

72 hours or 3 yes votes?

yes

(Step 11: Conclude the vote and announce results)

(Step 12: Upload distribution artifacts to release environment)

(Step 13: Close release branch and merge to 'develop')

(Step 14: Update website (not yet automated))

(Step 15: Send email to announcement mailing Iisl)

Figure 5. Release Process Diagram

134

Step 1: Heads-Up Email

Description

The RM should, if one doesn’t already exist, first create a new release umbrella issue in JIRA. This issue
is dedicated to tracking (a summary of) any discussion related to the planned new release. An example
of such an issue is FINERACT-873 - Release Apache Fineract v1.4.0 RESOLVED.

The RM then creates a list of resolved issues & features through an initial check in JIRA for already
resolved issues for the release, and then setup a timeline for release branch point. The time for the day
the issue list is created to the release branch point must be at least two weeks in order to give the
community a chance to prioritize and commit any last minute features and issues they would like to
see in the upcoming release.

The RM must then send the pointer to the umbrella issue along with the tentative timeline for branch
point to the developer lists. Any work identified as release related that needs to be completed should
be added as a sub tasks of the umbrella issue to allow all developers and users to see the overall
release progress in one place. The umbrella issue shall also link to any issues still requiring
clarification whether or not they will make it into the release.

The RM should then inform users when the git branch is planned to be created, by sending an email
based on this template:

135

[FINERACT] [PROPOSAL] 0 New release ${project['fineract.release.version']}
Hello everyone,

... based on our "How to Release Apache Fineract" process documented at
https://cwiki.apache.org/confluence/x/DRwIB:

I will create a ${project['fineract.release.version']} branch off develop in our git
repository at https://github.com/apache/fineract on ${project['fineract.release.date']}.

The release tracking umbrella issue for tracking all activity in JIRA is FINERACT-
${project['fineract.release.issue']!'0000"}
(https://issues.apache.org/jira/browse/FINERACT-
${project['fineract.release.issue']!'0000'}) for this Fineract
${project['fineract.release.version']}.

If you have any work in progress that you would like to see included in this release,
please add "blocking" 1links to the release JIRA issue.

I am the release manager for this release.
Cheers,

${project['fineract.config.name']}

0 Powered by Fineract Release Plugin [

Gradle Task

Command

% ./gradlew fineractReleaseStep1 -Pfineract.release.issue=1234
-Pfineract.release.date="Monday, April 25, 2022" -Pfineract.release.version=1.11.0

Step 2: Clean Up JIRA

Description

Before a release is done, make sure that any issues that are fixed have their fix version setup correctly.

project = FINERACT and resolution = fixed and fixVersion is empty

136

Move all unresolved JIRA issues which have this release as Fix Version to the next release

project = FINERACT and fixVersion = 1.11.0 and status not in (Resolved, Done, Accepted,
Closed)

You can also run the following query to make sure that the issues fixed for the to-be-released version
look accurate:

project = FINERACT and fixVersion = 1.11.0

Finally, check out the output of the JIRA release note tool to see which tickets are included in the
release, in order to do a sanity check.

Gradle Task

Command

% ./gradlew fineractReleaseStep2 -Pfineract.release.version=1.11.0

° This task is not yet automated!

Step 3: Create Release Branch

Description

Communicate with the community. You do not need to start a new email thread on the developer
mailing list to notify that you are about to branch, just do it ca. 2 weeks after the initial email, or later,
based on the discussion on the initial email.

You do not need to ask committers to hold off any commits until you have branched finished, as it’s
always possible to fast-forward the branch to latest develop, or cherry-pick last minute changes to it.
People should be able to continue working on the develop branch on bug fixes and great new features
for the next release while the release process for the current release is being worked through.

1. Clone fresh repository copy

% git clone git@github.com:apache/fineract.git
cd fineract

o
)

2. Check that current HEAD points to commit on which you want to base new release branch.
Checkout a particular earlier commit if not.

137

138

% git log @

@ Check current branch history. HEAD should point to commit that you want to be base for your
release branch

Create a new release branch with name "$Version"

% git checkout -b 1.11.0

Push new branch to Apache Fineract repository

% git push origin 1.11.0

Add new release notes in Release Folders. The change list can be swiped from the JIRA release note
tool (use the "text" format for the change log). See JIRA Cleanup above to ensure that the release
notes generated by this tool are what you are expecting.

Send en email announcing the new release branch on the earlier email thread
[FINERACT] [ANNOUNCE] 0 ${project['fineract.release.version']} release branch
Hello everyone,

. as previously announced, I've just created the release branch for our upcoming
${project['fineract.release.version']} release.

You can continue working and merging PRs to the develop branch for future releases, as
always.

The DRAFT release notes are on
https://cwiki.apache.org/confluence/display/FINERACT/${project['fineract.release.versi
on']}+-+Apache+Fineract. Does anyone see anything missing?

Does anyone have any last minutes changes they would like to see cherry-picked to
branch ${project['fineract.release.version']}, or are we good go and actually cut the

release based on this branch as it is?

I'11 initiate the final stage of actually creating the release on
${project['fineract.release.date']} if nobody objects.

Cheers,

${project['fineract.config.name']}

Gradle Task

Command

% ./gradlew fineractReleaseStep3 -Pfineract.release.date="Monday, May 10, 2022"
-Pfineract.release.version=1.11.0

Step 4: Freeze JIRA

Description

You first need to close the release in JIRA so that the about to be released version cannot be used as
"fixVersion" for new bugs anymore. Go to JIRA "Administer project" page and follow "Versions" in left
menu. Table with list of all releases should appear, click on additional menu on the right of your
release and choose "Release” option. Submit release date and you’re done.

Gradle Task

Command

% ./gradlew fineractReleaseStep4

° This task is not yet automated!

Step 5: Create Release Tag

Description

Next, you create a git tag from the HEAD of the release’s git branch.

o

git checkout 1.11.0

./gradlew clean integrationTests @

git tag -a 1.11.0 -m "Fineract 1.11.0 release"
git push origin 1.11.0

o° o°

o

@ Run additonally manual tests with the community app.

° It is important to create so called annotated tags (vs. lightweight) for releases.

Gradle Task

Command

% ./gradlew fineractReleaseStep5 -Pfineract.release.version=1.11.0

139

Step 6: Create Distribution

Description

Create source and binary artifacts. Make sure to do some sanity checks. The tar and the release branch
should match.

% cd /fineract-release-preparations @

tar -xvf apache-fineract-1.11.0-src.tar.qgz

% git clone <a href="https://git-wip-us.apache.org/repos/asf/fineract.git"
class="bare">git-wip-us.apache.org/repos/asf/fineract.git

cd fineract/

git checkout tags/1.11.0

cd ..

diff -r fineract apache-fineract-1.11.0-src

o

o o of

o°

@ Do a fresh clone of the tag.

Make sure code compiles and tests pass on the uncompressed source.

o

cd apache-fineract-1.11.0-src/fineract-provider @
gradlew clean integrationTest @

gradlew clean build ®

gradlew rat @

of of

o

(@ Make sure prerequisites are met before running these commands.
@ For running integration tests

® For building deploy able war

@ For RAT checks

Gradle Task

Command

% ./gradlew fineractReleaseStepb

Step 7: Sign Distribution

Description

All release artifacts must be signed. In order to sign a release you will need a PGP key. You should get
your key signed by a few other people. You will also need to receive their keys from a public key
server. See the Apache release signing page for more details. Please follow the steps defined in Release
Sign.

140

% gpg --armor --output apache-fineract-1.11.0-src.tar.gz.asc --detach-sig apache-
fineract-1.11.0-src.tar.gz

% gpg --print-md MD5 apache-fineract-1.11.0-src.tar.gz > apache-fineract-1.11.0-
src.tar.gz.md5

% gpg --print-md SHA512 apache-fineract-1.11.0-src.tar.gz > apache-fineract-1.11.0-
src.tar.gz.sha512

% gpg --armor --output apache-fineract-1.11.0--binary.tar.gz.asc --detach-sig apache-
fineract-1.11.0-binary.tar.gz

% gpg --print-md MD5 apache-fineract-1.11.0-binary.tar.gz > apache-fineract-1.11.0-
binary.tar.gz.md5

% gpg --print-md SHA512 apache-fineract-1.11.0-binary.tar.gz > apache-fineract-1.11.0-
binary.tar.gz.sha512

Gradle Task

Command

% ./gradlew fineractReleaseStep7

Step 8: Upload Distribution Staging

Description

Finally create a directory with release name (1.11.0 in this example) in dist.apache.org/repos/dist/dev/
fineract and add the following files in this new directory:

» apache-fineract-1.11.0-binary.tar.gz.sha

» apache-fineract-1.11.0-binary.tar.gz

» apache-fineract-1.11.0-binary.tar.gz.asc

* apache-fineract-1.11.0-binary.tar.gz.md5

» apache-fineract-1.11.0-src.tar.gz.sha

» apache-fineract-1.11.0-src.tar.gz

» apache-fineract-1.11.0-src.tar.gz.asc

* apache-fineract-1.11.0-src.tar.gz.md5

Upload binary and source archives to ASF’s distribution dev (staging) area:

141

https://dist.apache.org/repos/dist/dev/fineract
https://dist.apache.org/repos/dist/dev/fineract

% svn co <a href="https://dist.apache.org/repos/dist/dev/fineract/"
class="bare">dist.apache.org/repos/dist/dev/fineract/ fineract-dist-dev
% mkdir fineract-dist-dev/1.11.0

% cp fineract/build/distributions/* fineract-dist-dev/1.11.0/

% svn commit

o You will need your ASF Committer credentials to be able to access the Subversion host
dist.apache.org via.

Gradle Task

Command

% ./gradlew fineractReleaseStep8 -Pfineract.release.version=1.11.0

Step 9: Verify Distribution Staging

Description

Following are the typical things we need to verify before voting on a release candidate. And the release
manager should verify them too before calling out a vote.

Make sure release artifacts are hosted at dist.apache.org/repos/dist/dev/fineract

* Release candidates should be in format apache-fineract-1.11.0-binary.tar.gz

* Verify signatures and hashes. You may have to import the public key of the release manager to
verify the signatures. (gpg --recv-key <key id>)

* Git tag matches the released bits (diff -rf)

» Can compile successfully from source

* Verify DISCLAIMER, NOTICE and LICENSE (year etc)

« All files have correct headers (Rat check should be clean - gradlew rat)
* No jar files in the source artifacts

* Integration tests should work

Gradle Task

Command

% ./gradlew fineractReleaseStep9 -Pfineract.release.version=1.11.0

142

https://dist.apache.org
https://dist.apache.org/repos/dist/dev/fineract

° This task is not yet automated!

Step 10: Start Vote

Description

Voting has to be done on dev@fineract.apache.org. You can close the vote after voting period expires
(72 hours) and you accumulate sufficient votes (minimum 3 x +1 PMC votes).

[FINERACT] [VOTE] 00 ${project['fineract.release.version']} for release
Hello everyone,

. we have created Apache Fineract ${project['fineract.release.version']} release, with
the artifacts below up for a vote.

It fixes the following issues:
https://cwiki.apache.org/confluence/display/FINERACT/${project['fineract.release.version’

]}+-+Apache+Fineract

Source & Binary files :
https://dist.apache.org/repos/dist/dev/fineract/${project['fineract.release.version']}/

Tag to be voted on (rc#):
https://gitbox.apache.org/repos/asf?p=fineract.qit;a=commit;h=refs/heads/${project['finer

act.release.version']}

Fineract's KEYS containing the PGP key we used to sign the release:
https://dist.apache.org/repos/dist/dev/fineract/KEYS

Note that this release contains source and binary artifacts.
This vote will be open for 72 hours:

[1 +1 approve

[] +0 no opinion

[1 -1 disapprove (and reason why)

Cheers,

${project['fineract.config.name']}

Gradle Task

143

mailto:dev@fineract.apache.org

Command

% ./gradlew fineractReleaseStep10 -Pfineract.release.version=1.11.0

Step 11: Finish Vote

Description

Upon receiving 3 x +1 from the PMC, or after 72 hours (whichever one comes first), reply to the voting
thread and add the prefix "[RESULT]" to the subject line with the results, as follows:

[FINERACT] [VOTE] [RESULT] 00 ${project['fineract.release.version']} for release

<#if (project['fineract.vote'].approve.binding?size +
project['fineract.vote'].approve.nonBinding?size >
project['fineract.vote'].disapprove.binding?size +
project['fineract.vote'].disapprove.nonBinding?size)>

Voting is now closed and has passed with the following tally,

Binding +1s: ${project['fineract.vote'].approve.binding?size}

Non binding +1s: ${project['fineract.vote'].approve.nonBinding?size}
<felse>

Voting is now closed and has not passed with the following tally,

Binding +1s: ${project['fineract.vote'].approve.binding?size}
Non binding +1s: ${project['fineract.vote'].approve.nonBinding?size}

Binding -1s: ${project['fineract.vote'].disapprove.binding?size}
Non binding -1s: ${project['fineract.vote'].disapprove.nonBinding?size}
</#if>

Here are the detailed results:

<#list project['fineract.vote'].approve.binding>
Binding +1s:
<#items as item>
- ${item.name} (${item.email})
</#items>
</#Hlist>

<#list project['fineract.vote'].approve.nonBinding>
Non binding +1s:

<#items as item>
- ${item.name} (${item.email})

</#items>

144

</#list>

<#list project['fineract.vote'].disapprove.binding>
Binding -1s:
<#items as item>
- ${item.name} (${item.email})
</#items>
</#list>

<#list project['fineract.vote'].disapprove.nonBinding>
Non binding -1s:
<#items as item>
- ${item.name} (${item.email})
</#items>
</#list>

<#list project['fineract.vote'].noOpinion.binding>
Binding +0s:
<#items as item>
- ${item.name} (${item.email})
</#items>
</#list>

<#list project['fineract.vote'].noOpinion.nonBinding>
Non binding +0s:
<#items as item>
- ${item.name} (${item.email})
</#items>
</#list>

<#if (project['fineract.vote'].approve.binding?size +
project['fineract.vote'].approve.nonBinding?size >
project['fineract.vote'].disapprove.binding?size +
project['fineract.vote'].disapprove.nonBinding?size)>

Thanks to everyone who voted! I'll now continue with the rest of the release process.
<#else>

Thanks to everyone who voted! Looks like we have to repeat the vote.

</#if>

${project['fineract.config.name']}

Gradle Task

145

Command

% ./gradlew fineractReleaseStep11 -Pfineract.release.version=1.11.0

Step 12: Upload Distribution Release

Description

In order to release you have to checkout release repository located on dist.apache.org/repos/dist/
release/fineract and add release artifacts there.

% svn co <a href="https://dist.apache.org/repos/dist/release/fineract"
class="bare">dist.apache.org/repos/dist/release/fineract fineract-release
mkdir fineract-release/1.11.0/

cp fineract-dist-dev/1.11.0/* fineract-release/1.11.0/

svn add fineract-release/1.11.0/

svn commit -m "Fineract Release 1.11.0" fineract-release/1.11.0/

o o of

o

You will now get an automated email from the Apache Reporter Service (no-
reply@reporter.apache.org), subject "Please add your release data for 'fineract™ to add the release data
(version and date) to the database on reporter.apache.org/addrelease.html?fineract (requires PMC
membership).

Gradle Task

Command

% ./gradlew fineractReleaseStep12 -Pfineract.release.version=1.11.0

Step 13: Close Release Branch

Description

As discussed in FINERACT-1154, now that everything is final, please do the following to remove the
release branch (and just keep the tag), and make sure that everything on the release tag is merged to
develop and that e.g. git describe works:

146

https://dist.apache.org/repos/dist/release/fineract
https://dist.apache.org/repos/dist/release/fineract
mailto:no-reply@reporter.apache.org
mailto:no-reply@reporter.apache.org
https://reporter.apache.org/addrelease.html?fineract
https://issues.apache.org/jira/browse/FINERACT-1154

o

git checkout develop

git branch -D 1.11.0

git push origin :1.11.0

git checkout develop

git checkout -b merge-1.11.0

git merge -s recursive -Xignore-all-space 1.11.0 @
git commit

git push $USER

hub pull-request

S P of of o° of of

o

@ Manually resolve merge conflicts, if any

Gradle Task

Command

% ./gradlew fineractReleaseStep13 -Pfineract.release.version=1.11.0

é This task is not yet automated!

Step 14: Update website

Description

Finally update the fineract.apache.org website with the latest release details. The website’s HTML
source code is available at github.com/apache/fineract-site.

é This step is not yet updated. We are working on a static site generator setup.

Gradle Task

Command
% ./gradlew fineractReleaseStep14 @
® Currently doing nothing. Will trigger in the future the static site generator and publish on Github.

° This task is not yet automated!

Step 15: Announcement Email

Description

Send an email to announce@apache.org (sender address must be @apache.org):

147

https://fineract.apache.org
https://github.com/apache/fineract-site

[ANNOUNCE] Apache Fineract ${project['fineract.release.version']} Release

The Apache Fineract project is pleased to announce

the release of Apache Fineract ${project['fineract.release.version']}.

The release is available for download from
https://fineract.apache.org/#downloads

Fineract provides a reliable, robust, and affordable solution for entrepreneurs,
financial institutions, and service providers to offer financial services to the

worldis 2 billion underbanked and unbanked. Fineract is aimed at innovative mobile
and cloud-based solutions, and enables digital transaction accounts for all.

This release addressed ${project['fineract.release.issues']?size} issues.

Readme:
https://github.com/apache/fineract/blob/${project['fineract.release.version']}/README.md

Release page:
https://cwiki.apache.org/confluence/display/FINERACT/${project['fineract.release.version’
1}+-+Apache+Fineract

List of fixed issues:
https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=§{project['fineract.releas

e.versionld']}&styleName=Html&projectId=${project['fineract.release.projectId']}

For more information on Apache Fineract please visit
project home page: https://fineract.apache.org

The Apache Fineract Team

Gradle Task

Command

% ./gradlew fineractReleaseStep15 -Pfineract.release.version=1.11.0

Maintenance Release Process

This is a first attempt to introduce maintenance releases. Some details might change

o as soon as we get more experience with the process and feedback from the
community. The numbers here are still more or less arbitrary, and we’ll adapt as
necessary.

148

Rules
* hotfix releases are reserved for critical (BLOCKER) bugs and security issues. Probably we’ll have
some kind of voting process in place, e. g. "minimum 3 x +1 votes from PMC members"

* we will support (for now to start) two minor versions back counting from the last release; this
would mean that once 1.8.0 is out we would support 1.8.x and 1.7.x, but not 1.6.x and older; this
rule is tentative, we’ll see then what we do in the future when we have more feedback.

» guaranteed backward compatibility with the last minor release; i. e. "1.6.1" is a drop-in replacement
for "1.6.0"

* NO new features, tables, data, REST endpoints

* NO major (or "minor" framework upgrades); i. e. if we used Spring Boot "2.6.1" in version "1.6.0" of
Fineract we can upgrade dependencies to "2.6.10" (unless it breaks something of course), but not to
"2.7.2" of Spring Boot

o The rest of the release process is the same as for normal releases. In the future we
might have smaller time windows for reviews.

Publish Release Artifacts

o More on releases at the ASF see www.apache.org/legal/release-policy.html#distribute-
raw-artifact
Requirements

You need to have your GPG keypairs properly set up. The JAR release artifacts (currently only fineract-
client) are signed with a Gradle plugin just before being uploaded to the Maven repository. Please
make sure that the following properties are set in your private gradle.properties file in your home
folder:

signing.keyId=7890ABCD
signing.password=*****
signing.secretKeyRingFile=~/.gnupg/secring.gpg

This is quite similiar to the Fineract release plugin properties for GPG. In one of the next release we’ll
merge these two setups to avoid this duplicated configuration.

Maven Repository

We are using the ASF’s official Nexus Maven repository to publish our snapshot and release artifacts.

e Find more information at infra.apache.org/publishing-maven-artifacts.html

149

https://www.apache.org/legal/release-policy.html#distribute-raw-artifact
https://www.apache.org/legal/release-policy.html#distribute-raw-artifact
https://repository.apache.org
https://infra.apache.org/publishing-maven-artifacts.html

NPM Registry

For convenience we will be using Github Packages to publish Fineract’s Typescript API client.

TBD

Docker Hub

TBD

150

Fineract SDKs

TBD

Generate Apache Fineract API Client

Apache Fineract supports client code generation using OpenAPI Generator. It uses OpenAPI
Specification Version 3.0.3.

Fineract SDK Java API Client

The fineract-client.jar will eventually be available on Maven Central (watch FINERACT-1102). Until it
is, you can quite easily build the latest and greatest version locally from source, see below.

The FineractClient is the entry point to the Fineract SDK Java API Client. Calls is a convenient and
recommended utility to simplify the use of the retrofit2.Call type which all API operations return.
This permits you to use the API like the FineractClientDemo illustrates:

import org.apache.fineract.client.util.FineractClient;
import static org.apache.fineract.client.util.Calls.ok;

FineractClient fineract = FineractClient.builder().baseURL(
"https://demo.fineract.dev/fineract-provider/api/v1/").tenant("default")
.basicAuth("mifos", "password").build();
List<RetrieveOneResponse> staff = Calls.ok(fineract.staff.retrieveAl116(1L, true,
false, "ACTIVE"));
String name = staff.get(0).getDisplayName();
log.info("Display name: {}", name);

Generate API Client

The API client is built as part of the standard overall Fineract Gradle build. The client JAR can be found
in fineract-client/build/1ibs as fineract-client.jar.

If you need to save time to incrementally work on making small changes to Swagger annotations in an
IDE, you can execute e.g. the following line in root directory of the project to exclude non-require
Gradle tasks:

./gradlew -x compileJava -x compileTest -x spotlessJava -x enhance resolve
preparelnputYaml :fineract-client:buildJavaSdk

151

https://openapi-generator.tech
https://swagger.io/specification/
https://swagger.io/specification/
https://issues.apache.org/jira/browse/FINERACT-1102
https://github.com/search?q=repo%3Aapache%2Ffineract+path%3AFineractClient.java&type=code
https://github.com/search?l=&q=repo%3Aapache%2Ffineract+path%3ACalls.java&type=code
https://square.github.io/retrofit/2.x/retrofit/retrofit2/Call.html
https://github.com/search?l=&q=repo%3Aapache%2Ffineract+path%3AFineractClientDemo.java&type=code

Validate OpenAPI Spec File

The resolve task in build.gradle file will generate the OpenAPI Spec File for the project. To make sure
Swagger Codegen generates a correct library, it is important for the OpenAPI Spec file to be valid.
Validation is done automatically by the OpenAPI code generator Gradle plugin. If you still have
problems during code generation please use Swagger OpenAPI Validator to validate the spec file.

152

https://github.com/apache/fineract/blob/develop/fineract-provider/build.gradle#L80
https://validator.swagger.io/

Frequently Asked Questions

See Fineract FAQ wiki page.

153

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=91554327

Glossary

TBD

154

Index

155

Appendix A: Fineract Application Properties

TBD

Tenant Database Properties

Table 3. Tenant Database Properties

Name

fineract.tenant.host

fineract.tenant.port

fineract.tenant.usernam

e

fineract.tenant.passwor
d

fineract.tenant.paramet
ers

fineract.tenant.timezone

fineract.tenant.identifier

fineract.tenant.name

fineract.tenant.descripti
on

156

Env Variable

FINERACT_DEFAULT_TE
NANTDB_HOSTNAME

FINERACT_DEFAULT_TE
NANTDB_PORT

FINERACT_DEFAULT_TE
NANTDB_UID

FINERACT_DEFAULT_TE
NANTDB_PWD

FINERACT_DEFAULT_TE
NANTDB_CONN_PARAM
S

FINERACT_DEFAULT_TE
NANTDB_TIMEZONE

FINERACT_DEFAULT_TE
NANTDB_IDENTIFIER

FINERACT_DEFAULT_TE
NANTDB_NAME

FINERACT_DEFAULT_TE
NANTDB_DESCRIPTION

Default Value

localhost

3306

root

mysql

Asia/Kolkata

default

fineract_default

Default Demo Tenant

Description

This property sets the
hostname of the default
tenant database.

This property sets the
port of the default
tenant database.

This property sets the
username of the default
tenant database.

This property sets the
password of the default
tenant database.

This property sets the
connection parameters
of the default tenant
database. eg. whether
sslis enabled or not

This property sets the
timezone of the default
tenant

This property sets the
unique identifier for the
tenant within fineract

This property sets the
database name of the
default tenant

This property sets the
description of the
default tenant

Name

fineract.tenant.master-
password

fineract.tenant.encrypti
on

spring.liquibase.enabled

fineract.tenant.read-
only-name

fineract.tenant.read-
only-host

fineract.tenant.read-
only-port

fineract.tenant.read-
only-username

fineract.tenant.read-
only-password

Env Variable

FINERACT_DEFAULT _TE fineract

NANTDB_MASTER_PASS
WORD

FINERACT_DEFAULT TE AES/CBC/PKCS5Padding

NANTDB_ENCRYPTION

FINERACT_LIQUIBASE_
ENABLED

FINERACT_DEFAULT_TE
NANTDB_RO_NAME

FINERACT_DEFAULT_TE
NANTDB_RO_HOSTNAM
E

FINERACT_DEFAULT_TE
NANTDB_RO_PORT

FINERACT_DEFAULT_TE
NANTDB_RO_UID

FINERACT_DEFAULT_TE
NANTDB_RO_PWD

Default Value

Description

The password used to
encrypt sensitive tenant
data within the database

This property sets the
symmetric encryption
algorithm used to
encrypt sensitive tenant
data within the database
e.g tenant database
password

If set to true, liquibase
will be enabled and the
instance running this
configuration will run
migrations

For read only
configuration, set this to
the name of the read
only tenant database

For read only
configuration, set this to
the hostname of the
read only tenant
database

For read only
configuration, set this to
the port of the read only
tenant database

For read only
configuration, set this to
the username of the
read only tenant
database

For read only
configuration, set this to
the password of the
read only tenant
database

157

Name

fineract.tenant.read-
only-parameters

Hikari Connection Pool Properties

Env Variable

FINERACT_DEFAULT_TE
NANTDB_RO_CONN_PA
RAMS

Table 4. Hikari Connection Pool Properties

Name

spring.datasource.hikari
.driverClassName

spring.datasource.hikari
.jdbcUrl

spring.datasource.hikari
.username

spring.datasource.hikari
.password

spring.datasource.hikari
.minimumIdle

spring.datasource.hikari
.maximumPoolSize

158

Env Variable

FINERACT_HIKARI_DRI
VER_SOURCE_CLASS_NA
ME

FINERACT_HIKARI_JDBC jdbc:mariadb://localhost
:3306/fineract_tenants

_URL

FINERACT_HIKARI_USE root

RNAME

FINERACT_HIKARI_PAS mysql

SWORD

FINERACT_HIKARI_MIN 3

IMUM_IDLE

FINERACT_HIKARI_MAX 10

IMUM_POOL_SIZE

Default Value

Default Value

org.mariadb.jdbc.Driver

Description

For read only
configuration, set this to
the connection
parameters of the read
only tenant database

Description

The correct driver name
for the database that
will be used with
fineract.

The database
connection string for the
database with tenant
information that will be
used with fineract.

The username for the
database with tenant
information that will be
used with fineract

The password for the
database with tenant
information that will be
used with fineract

The minimum number
of connections in hakari
pool that will be
maintained when the
system is idle

The maximum number
of connections that
hikari can create in the
pool.

Name

spring.datasource.hikari
.dleTimeout

spring.datasource.hikari
.connectionTimeout

spring.datasource.hikari
.connectionTestquery

spring.datasource.hikari
.autoCommit

spring.datasource.hikari
.dataSourceProperties['c
achePrepStmts']

spring.datasource.hikari
.dataSourceProperties[p
repStmtCacheSize’]

spring.datasource.hikari
.dataSourceProperties[p
repStmtCacheSqlLimit']

Env Variable

FINERACT_HIKARI_IDLE
_TIMEOUT

FINERACT_HIKARI_CON
NECTION_TIMEOUT

FINERACT_HIKARI_TES
T_QUERY

FINERACT_HIKARI_AUT
O_COMMIT

FINERACT_HIKARI_DS_P
ROPERTIES_CACHE_PRE
P_STMTS

FINERACT_HIKARI_DS_P
ROPERTIES_PREP_STMT
_CACHE_SIZE

FINERACT_HIKARI_DS_P
ROPERTIES_PREP_STMT
_CACHE_SQL_LIMIT

Default Value
60000

20000

SELECT 1

true

true

250

2048

Description

The maximum time in
milliseconds that a
connection is allowed to
sitidle in the pool.

The maximum time in
milliseconds that hikari
will wait for a
connection to be
established.

The query that will be
used to test the database
connection.

If set to true, the
connections in the pool
will be in auto-commit
mode.

If set to true, hikari
caches compiled SQL
statements to avoid the
overhead of re-parsing
and re-compiling SQL
queries.

The maximum number
of prepared statements
that hikari can cache.

This property sets the
upper limit for the size
of individual SQL
queries that can be
stored in the cache. If a
SQL query exceeds this
limit in terms of
character length, it will
not be cached, even if
caching is enabled.

159

Name Env Variable Default Value

spring.datasource.hikari FINERACT _HIKARI DS P true
.dataSourceProperties['u ROPERTIES_USE_SERVE
seServerPrepStmts'] R_PREP_STMTS

spring.datasource.hikari FINERACT_HIKARI_DS_P true
.dataSourceProperties['u ROPERTIES_USE_LOCAL
seLocalSessionState'] _SESSION_STATE

spring.datasource.hikari FINERACT _HIKARI DS P true
.dataSourceProperties['r ROPERTIES_REWRITE_B
ewriteBatchedStatement ATCHED STATEMENTS

s']

spring.datasource.hikari FINERACT HIKARI DS _P true
.dataSourceProperties['c ROPERTIES_CACHE_RES
acheResultSetMetadata'] ULT SET METADATA

160

Description

This property
determines if the
connection should
leverage server-side
prepared statements
rather than client-side
ones.

This property allows the
connection pool to
locally track changes to
session-specific
properties (like
character sets or time
zones) rather than
sending these queries to
the database repeatedly.

This property, when set
to true, allows the JDBC
driver to rewrite
batched SQL statements
into a more efficient
single query format
before sending them to
the database.

This property, when set
to true, enables the
caching of metadata for
ResultSet objects. This
metadata includes
details such as column
names, types, and other
relevant schema
information.

Name

Env Variable Default Value

spring.datasource.hikari FINERACT _HIKARI DS P true
.dataSourceProperties['c ROPERTIES_CACHE_SER
acheServerConfiguratio VER_CONFIGURATION

n']

spring.datasource.hikari FINERACT_HIKARI_DS_P true
.dataSourceProperties['e ROPERTIES_ELIDE_SET _

lideSetAutoCommits']

AUTO_COMMITS

spring.datasource.hikari FINERACT_HIKARI_DS_P false

.dataSourceProperties[’
maintainTimeStats']

ROPERTIES_MAINTAIN_
TIME_STATS

spring.datasource.hikari FINERACT_HIKARI_DS_P true
.dataSourceProperties[1 ROPERTIES_LOG_SLOW

ogSlowQueries']

_QUERIES

Description

When set to true, this
property allows the
JDBC driver to cache the
server configuration
settings, which include
properties such as
session state, character
sets, and other
configuration details
relevant to the database
server.

When set to true, this
property prevents the
JDBC driver from
issuing a SET
autocommit command
on the database
connection during its
initialization.

When set to true, this
property enables
HikariCP to track and
maintain statistics
regarding various
timing metrics related to
connection pool
operations, such as
connection acquisition
times.

When set to true, this
property enables
HikariCP to log SQL
queries that exceed a
specified execution time
threshold, allowing
developers and
administrators to
identify and analyze
performance issues
related to slow-running
queries.

161

Name

Env Variable Default Value

spring.datasource.hikari FINERACT _HIKARI DS P true
.dataSourceProperties['d ROPERTIES_DUMP_QUE
umpQueriesOnExceptio RIES_IN_EXCEPTION

n']

SSL Properties

Table 5. SSL Properties

Name

server.ssl.enabled

server.ssl.protocol

server.ssl.ciphers

server.ssl.enabled-
protocols

162

Env Variable Default Value

FINERACT_SERVER _SSL_ true
ENABLED

FINERACT_SERVER SSL_ TLS
PROTOCOL

FINERACT_SERVER_SSL_ TLS_RSA_WITH_AES_12
CIPHERS 8_CBC_SHA256

FINERACT_SERVER_SSL_ TLSv1.2
PROTOCOLS

Description

When set to true, this
property instructs
HikariCP to log the SQL
statements that caused
exceptions during
execution. This includes
capturing the query text
and any associated
parameters.

Description

When set to true, SSL
(Secure Sockets Layer)
or TLS (Transport Layer
Security) will be enabled
for the server.

This property allows
you to define specific
SSL/TLS protocol
version the server will
use when establishing
secure connections.
Common protocols
include TLSv1.2,
TLSv1.3, etc.

This property allows
you to control the cipher
suites that fineract will
accept for secure
connections

This property allows
you to define a list of
SSL/TLS protocol
versions that the server
will support when
establishing secure
connections

Name

server.ssl.key-store

server.ssl.key-store-
password

Env Variable Default Value

FINERACT_SERVER_SSL_ classpath:keystore.jks
KEY_STORE

FINERACT_SERVER_SSL_ openmf
KEY_STORE_PASSWORD

Authentication Properties

Table 6. Authentication Properties

Name

fineract.security.basicau
th.enabled

fineract.security.oauth.e
nabled

fineract.security.2fa.ena
bled

spring.security.oauth2.r
esourceserver.jwt.issuer
-uri

Env Variable Default Value

FINERACT_SECURITY_B true
ASICAUTH_ENABLED

FINERACT_SECURITY_O false
AUTH_ENABLED

FINERACT_SECURITY_2F false
A_ENABLED

FINERACT_SERVER_OAU localhost:9000/auth/
TH_RESOURCE_URL realms/fineract

Description

The property is used to
specify the location of
the SSL key store file
that contains the
server’s private key and
the associated certificate

The property defines the
password for the
keystore specified under
property server.ssl.key-
store

Description

When set to true, the
supported
authentication method
will be basic
authentication.

When set to true, the
supported
authentication method
will be OAuth.

Set the value to true
enable two-factor
authentication. For this
to work as expected,
ensure that you have set
the correct email/sms
configuration

If OAuth is enabled and
a custom resouce server
(different from what is
provided) is required,
set the issuer-uri here.

163

http://localhost:9000/auth/realms/fineract
http://localhost:9000/auth/realms/fineract

Tomcat Properties

Table 7. Tomcat Properties
Name

server.tomcat.accept-
count

server.tomcat.accesslog.
enabled

server.tomcat.max-
connections

server.tomcat.max-http-
form-post-size

server.tomcat.max-keep-
alive-requests

server.tomcat.threads.m
ax

server.tomcat.threads.m
in-spare

164

Env Variable Default Value

FINERACT_SERVER TO 100
MCAT_ACCEPT_COUNT

FINERACT_SERVER TO false
MCAT_ACCESSLOG_ENA
BLED

FINERACT_SERVER TO 8192
MCAT_MAX_CONNECTI
ONS

FINERACT_SERVER TO 2MB
MCAT_MAX_HTTP_FOR
M_POST_SIZE

FINERACT_SERVER TO 100
MCAT_MAX_KEEP_ALIV
E_REQUESTS

FINERACT_SERVER TO 200
MCAT_THREADS_MAX

FINERACT_SERVER TO 10
MCAT_THREADS_MIN_S
PARE

Description

The property specifies
the maximum number
of concurrent
connection requests that
embedded Tomcat can
queue. If this limit is
reached, incoming
connection requests will
be rejected.

If set to true, tomcat will
log access requests to
file

Sets the maximum
number of simultaneous
connections Tomcat can
handle.

The property in sets the
maximum size of HTTP
POST requests that
Tomcat can handle

The property specifies
the maximum number
of HTTP requests that
can be sent over a single
persistent connection
(HTTP Keep-Alive)
before Tomcat closes the
connection

The property sets the
maximum number of
threads that Tomcat can
use to process requests

The property specifies
the minimum number
of spare (idle) threads
that Tomcat should
maintain

Kafka Properties

Table 8. Kafka related properties for Remote Spring Batch Jobs

Name

fineract.remote-job-
message-
handler.kafka.enabled

fineract.remote-job-
message-
handler.kafka.topic.auto
-create

fineract.remote-job-
message-
handler.kafka.topic.nam
e

fineract.remote-job-
message-
handler.kafka.topic.repli
cas

fineract.remote-job-
message-
handler.kafka.topic.part
itions
fineract.remote-job-
message-
handler.kafka.bootstrap-
servers

fineract.remote-job-
message-
handler.kafka.consumer
.group-id

Env Variable

FINERACT_REMOTE_JOB false
_MESSAGE_HANDLER K
AFKA_ENABLED

FINERACT_REMOTE_JOB true
_MESSAGE_HANDLER K
AFKA_TOPIC_AUTO_CRE

ATE

FINERACT_REMOTE_]JOB job-topic
_MESSAGE_HANDLER_K
AFKA_TOPIC_NAME

FINERACT_REMOTE_JOB 1
_MESSAGE_HANDLER K
AFKA_TOPIC_REPLICAS

FINERACT_REMOTE_JOB 10
_MESSAGE_HANDLER K
AFKA_TOPIC_PARTITIO

NS

FINERACT_REMOTE_JOB localhost:9092

_MESSAGE_HANDLER K
AFKA_BOOTSTRAP_SER
VERS

FINERACT_REMOTE_]JOB fineract-consumer-

_MESSAGE_HANDLER_K group-id
AFKA_CONSUMER_GRO
UPID

Default Value

Description

Enables or disables
Kafka for remote job
execution. If Kafka is
enabled then JMS shall
be disabled.

Enables topic auto
creation. In case the
auto creation of the
topic is disabled please
make sure that the
replica and the partition
count is properly
configured.

Name of the topic where
partitioned tasks are
sent to

Number of the replicas

Number of partitions

Comma separated list of

bootstrap Servers

Group ID of the
Consumer

165

Name

fineract.remote-job-
message-
handler.kafka.consumer
.extra-properties-key-
value-separator

fineract.remote-job-
message-
handler.kafka.consumer
.extra-properties-
separator

fineract.remote-job-
message-
handler.kafka.consumer
.extra-properties

fineract.remote-job-
message-
handler.kafka.producer.
extra-properties-key-
value-separator

fineract.remote-job-
message-
handler.kafka.producer.
extra-properties-
separator

fineract.remote-job-
message-
handler.kafka.producer.
extra-properties

fineract.remote-job-
message-
handler.kafka.admin.ext
ra-properties-key-value-
separator

166

Env Variable

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER K
AFKA_CONSUMER_EXTR
A_PROPERTIES_SEPARA
TOR

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER K
AFKA_CONSUMER_EXTR
A_PROPERTIES_SEPARA
TOR

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER_K
AFKA_CONSUMER_EXTR
A_PROPERTIES

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER K
AFKA_PRODUCER_EXTR
A_PROPERTIES_KEY_VA

LUE_SEPARATOR

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER K
AFKA_PRODUCER_EXTR

A_PROPERTIES_SEPARA

TOR

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER_K
AFKA_PRODUCER_EXTR
A_PROPERTIES

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER K
AFKA_ADMIN_EXTRA_P
ROPERTIES_KEY_VALUE
_SEPARATOR

Default Value

Description

Defines key and value
separator for
consumer,e.g.:
key=value

Defines item separator
for consumer, e.g.:
keyl=valuel | key2=valu
e’

#holds list of key value
pairs using the above
defined separators for
consumer:

keyl=valuel | key2=valu
e2|...|keyn=valuen

Defines key and value
separator for
producer,e.g.: key=value

Defines item separator
for producer, e.g.:
keyl=valuel | key2=valu
e2

#holds list of key value
pairs using the above
defined separators for
producer:

keyl=valuel | key2=valu
e2|...|keyn=valuen
Defines key and value

separator for admin,e.g.:
key=value

Name

fineract.remote-job-
message-
handler.kafka.admin.ext
ra-properties-separator

fineract.remote-job-
message-
handler.kafka.admin.ext
ra-properties

Env Variable

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER K
AFKA_ADMIN_EXTRA_P
ROPERTIES_SEPARATOR

FINERACT_REMOTE_]JOB
_MESSAGE_HANDLER K
AFKA_ADMIN_EXTRA_P

ROPERTIES

Table 9. Kafka related Properties for External Events

Name

fineract.events.external.
producer.kafka.enabled

fineract.events.external.
producer.kafka.timeout-
in-seconds

fineract.events.external.
producer.kafka.topic.aut
o-Ccreate

fineract.events.external.
producer.kafka.topic.na
me

fineract.events.external.

Env Variable

FINERACT_EXTERNAL_E
VENTS_KAFKA_ENABLE
D

FINERACT_EXTERNAL_E
VENTS_KAFKA_TIMEOU
T_IN_SECONDS

FINERACT_EXTERNAL_E
VENTS_KAFKA_TOPIC_A
UTO_CREATE

FINERACT_EXTERNAL_E
VENTS_KAFKA_TOPIC_N
AME

FINERACT_EXTERNAL_E

producer.kafka.topic.rep VENTS_KAFKA_TOPIC_R

licas

fineract.events.external.
producer.kafka.topic.pa
rtitions

EPLICAS

FINERACT_EXTERNAL_E
VENTS_KAFKA_TOPIC_P
ARTITIONS

Default Value
|

Default Value

false

10

true

external-events

10

Description

Defines item separator
for admin, e.g.:
keyl=valuel | key2=valu
e2

#holds list of key value
pairs using the above
defined separators for
admin:

keyl=valuel | key2=valu
e2|...|keyn=valuen

Description

Enables disables Kafka
for External Events. If
Kafka is enabled then
JMS shall be disabled.

Timeout for Kafka
confirming the
messages written in the
topic

Enables topic auto
creation. In case the
auto creation of the
topic is disabled please
make sure that the
replica and the partition
count is properly
configured.

Name of the topic where
external events are sent
to

Number of the replicas

Number of partitions

167

Name

fineract.events.external.
producer.kafka.bootstra
p-servers

fineract.events.external.
producer.kafka.produce
r.extra-properties-
separator

fineract.events.external.

producer.kafka.produce
r.extra-properties-key-
value-separator

fineract.events.external.

producer.kafka.produce
r.extra-properties

fineract.events.external.

producer.kafka.admin.e
Xtra-properties-
separator

fineract.events.external.

producer.kafka.admin.e
xtra-properties-key-
value-separator

fineract.events.external.

producer.kafka.admin.e
Xtra-properties

Env Variable

FINERACT_EXTERNAL_E
VENTS_KAFKA_BOOTST
RAP_SERVERS

FINERACT_EXTERNAL_E
VENTS_KAFKA_PRODUC
ER_EXTRA_PROPERTIES
_SEPARATOR

FINERACT_EXTERNAL_E
VENTS_KAFKA_PRODUC
ER_EXTRA_PROPERTIES
_KEY_VALUE_SEPARAT
OR

FINERACT_EXTERNAL_E
VENTS_KAFKA_PRODUC
ER_EXTRA_PROPERTIES

FINERACT_EXTERNAL_E
VENTS_KAFKA_ADMIN_
EXTRA_PROPERTIES_SE
PARATOR

FINERACT_EXTERNAL_E
VENTS_KAFKA_ADMIN_
EXTRA_PROPERTIES_KE
Y _VALUE_SEPARATOR

FINERACT_EXTERNAL_E
VENTS_KAFKA_ADMIN_
EXTRA_PROPERTIES

Metrics Properties

Default Value
localhost:9092

linger.ms=10 | batch.size
=16384

Description

Comma separated list of
Kafka bootstrap servers

Defines item separator
for producer,e.g.:
key=value

Defines key and value
separator for producer
client

Defines the extra
properties for external
event producer clients.
Optimization for
sending out large
volume of messages.
Increases Batch buffer
size and batching time
window.

Defines item separator
for admin client.

Defines key and value
separator for admin
client

Defines the extra
properties for external
event admin clients

For further understanding of the configurations properties related to metrics, refer to Springboot

metrics docs

Table 10. Metrics Properties

168

https://docs.spring.io/spring-boot/docs/2.0.5.RELEASE/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/2.0.5.RELEASE/reference/html/production-ready-metrics.html

Name

management.info.git.mo
de

management.endpoints.
web.exposure.include

management.tracing.en
abled

management.metrics.dis
tribution.percentiles-
histogram.http.server.re
quests

management.otlp.metric
s.export.url

management.otlp.metric
s.export.aggregationTe
mporality

management.promethe
us.metrics.export.enable
d

spring.cloud.aws.cloudw
atch.enabled

management.metrics.ex
port.cloudwatch.enable
d

management.metrics.ex
port.cloudwatch.namesp
ace

management.metrics.ex
port.cloudwatch.step

Env Variable

FINERACT_MANAGEME
NT_ENDPOINT_WEB_EX
POSURE_INCLUDE

FINERACT_MANAGEME
NT_METRICS_TAGS_APP
LICATION

FINERACT MANAGEME
NT_METRICS_DISTRIBU
TION_HTTP_SERVER_RE
QUESTS

FINERACT_MANAGEME
NT_OLTP_METRICS_EXP
ORT_URL

FINERACT_MANAGEME
NT_OLTP_METRICS_EXP
ORT_AGGREGATION_TE
MPORALITY

FINERACT_MANAGEME
NT_PROMETHEUS_ENA
BLED

FINERACT_MANAGEME
NT_CLOUDWATCH_ENA
BLED

FINERACT_MANAGEME
NT_CLOUDWATCH_ENA
BLED

FINERACT_MANAGEME
NT_CLOUDWATCH_NA
MESPACE

FINERACT_MANAGEME
NT_CLOUDWATCH_STEP

Default Value
FULL

health,info,prometheus

fineract

false

tempo:4318/vl/traces

cumulative

false

false

false

fineract

Description

Mode for displaying Git
information in the /info
endpoint.

Comma-separated list of
endpoints that should be
exposed over the web.

Whether tracing is
enabled.

Whether to publish
percentile histograms
for HTTP server
requests.

URL to export OTLP
metrics.

Aggregation temporality
for OTLP metrics export.

Whether to enable
Prometheus metrics
export.

Whether to enable AWS
CloudWatch integration.

Whether to enable
CloudWatch metrics
export.

Namespace for
CloudWatch metrics.

Step size for
CloudWatch metrics
export.

169

http://tempo:4318/v1/traces

AWS Configuration Properties

For further understanding of the configuration properties related to AWS, refer to Spring Cloud AWS

documentation.

Table 11. AWS Configuration Properties

Name

spring.cloud.aws.endpoi
nt

spring.cloud.aws.region.
static

spring.cloud.aws.creden
tials.access-key

spring.cloud.aws.creden
tials.secret-key

spring.cloud.aws.creden
tials.instance-profile

spring.cloud.aws.creden
tials.profile.name

spring.cloud.aws.creden
tials.profile.path

Env Variable Default Value

FINERACT_AWS_ENDPO
INT

FINERACT_AWS_REGIO us-east-1
N_STATIC

FINERACT_AWS_CREDE
NTIALS_ACCESS_KEY

FINERACT_AWS_CREDE
NTIALS_SECRET_KEY

FINERACT_AWS_CREDE false
NTIALS_INSTANCE_PRO
FILE

FINERACT_AWS_CREDE
NTIALS_PROFILE_NAME

FINERACT_AWS_CREDE
NTIALS_PROFILE_PATH

Resilience4j Properties

For a deeper understanding of resilience4j, refer to the Official website

Table 12. Resilience4j Properties

Name

resilience4j.retry.instan
ces.executeCommand.m
ax-attempts

170

Env Variable Default Value

FINERACT_COMMAND_ 3
PROCESSING_RETRY_M
AX_ATTEMPTS

Description

The AWS service
endpoint.

The static region for
AWS services.

The AWS access key.

The AWS secret key.

Whether to use the
instance profile for
credentials.

The name of the AWS
credentials profile.

The path to the AWS
credentials profile.

Description

The number of attempts
that resilience4j will
attempt to execute a
command after a failed
execution. Refer to org.
apache. fineract.
commands. service.
SynchronousCommandP
rocessingService#execut
eCommand for more
details

https://docs.awspring.io/spring-cloud-aws/docs/current/reference/html/index.html
https://docs.awspring.io/spring-cloud-aws/docs/current/reference/html/index.html
https://resilience4j.readme.io/docs/getting-started

Name

Env Variable

resilience4j.retry.instan FINERACT_COMMAND_
ces.executeCommand.w PROCESSING _RETRY W

ait-duration

AIT_DURATION

resilience4j.retry.instan FINERACT_COMMAND_

ces.executeCommand.en PROCESSING_RETRY_EN

able-exponential-
backoff

ABLE_EXPONENTIAL_B
ACKOFF

resilience4j.retry.instan FINERACT_COMMAND_
ces.executeCommand.re PROCESSING_RETRY EX

tryExceptions

PONENTIAL_BACKOFF_
MULTIPLIER

Default Value
1s

true

org.springframework.da
o.ConcurrencyFailureEx
ception,org.eclipse.persi
stence.exceptions.Optim
isticLockException,jakar
ta.persistence.Optimistic
LockException,org.sprin
gframework.orm.jpa.Jpa
OptimisticLockingFailur
eException,org.apache.fi
neract.infrastructure.co

re.exception.Idempotent
CommandProcessUnder
ProcessingException

resilience4j.retry.instan FINERACT _PROCESS_JO 3
ces.processjobDetailFor B_DETAIL_RETRY_MAX_
Execution.max-attempts ATTEMPTS

resilience4j.retry.instan FINERACT_PROCESS_JO 1s
ces.processJobDetailFor B_DETAIL_RETRY_WAIT
Execution.wait-duration _DURATION

Description

The fixed time value
that the retry instance
will wait before the next
attempt can be made to
execute a command

If set to true, the wait-
duration will increase
exponentially between
each retry to execute a
command

This property specifies
the list of exceptions
that the execute
command retry instance
will retry on

The number of attempts
that resilience4j will
attempt to process job
details for execution.
Refer to
org.apache.fineract.infr
astructure.jobs.service.]
obRegisterServiceImpl#
processJobDetailForExe
cution for more details

The fixed time value
that the retry instance
will wait before the next
attempt can be made

171

Name

resilience4j.retry.instan
ces.processjobDetailFor
Execution.enable-
exponential-backoff

resilience4j.retry.instan
ces.processJobDetailFor
Execution.exponential-
backoff-multiplier

resilience4j.retry.instan
ces.recalculatelnterest.
max-attempts

resilience4j.retry.instan
ces.recalculateInterest.
wait-duration

resilience4j.retry.instan
ces.recalculateInterest.e
nable-exponential-
backoff

resilience4j.retry.instan
ces.recalculateInterest.e
xponential-backoff-
multiplier

172

Env Variable

FINERACT_PROCESS_]JO

B_DETAIL_RETRY_ENAB
LE_EXPONENTIAL_BAC

KOFF

FINERACT_PROCESS_]JO

B_DETAIL_RETRY_EXPO
NENTIAL_BACKOFF_MU
LTIPLIER

FINERACT_PROCESS_RE
CALCULATE_INTEREST_
RETRY_MAX_ATTEMPTS

FINERACT_PROCESS_RE
CALCULATE_INTEREST _
RETRY_WAIT_DURATIO
N

FINERACT_PROCESS_RE
CALCULATE_INTEREST_
RETRY_ENABLE_EXPON
ENTIAL_BACKOFF

FINERACT_PROCESS_RE
CALCULATE_INTEREST_
RETRY_EXPONENTIAL_
BACKOFF_MULTIPLIER

Default Value

true

1s

true

Description

If set to true, the wait-
duration will increase
exponentially between
each retry to process job
detail

The multiplier for
exponential backoff, this
is useful only when
enable-exponential-
backoff is set to true

The number of attempts
that resilience4j will
attempt to run
recalculate interest.
Refer to
org.apache.fineract.port
folio.loanaccount.servic
e.
LoanWritePlatformServi
ceJpaRepositorylmpl#re
calculateInterest for
more details

The fixed time value
that the retry instance
will wait before the next
attempt can be made

If set to true, the wait-
duration will increase
exponentially between
each retry to recalculate
interest

The multiplier for
exponential backoff, this
is useful only when
enable-exponential-
backoff is set to true

Name

resilience4j.retry.instan
ces.recalculateInterest.r
etryException

Env Variable

FINERACT_PROCESS_RE
CALCULATE_INTEREST_
RETRY_EXCEPTIONS

Default Value

org.springframework.da
o.ConcurrencyFailureEx
ception,org.eclipse.persi
stence.exceptions.Optim
isticLockException,jakar
ta.persistence.Optimistic
LockException,org.sprin
gframework.orm.jpa.Jpa
OptimisticLockingFailur
eException

resilience4j.retry.instan FINERACT_PROCESS_PO 3

ces.postInterest.max-
attempts

resilience4j.retry.instan
ces.postInterest.wait-
duration=

resilience4j.retry.instan
ces.postInterest.enable-
exponential-backoff

resilience4j.retry.instan
ces.postinterest.expone
ntial-backoff-multiplier

ST_INTEREST_RETRY_M
AX_ATTEMPTS

FINERACT_PROCESS_PO
ST_INTEREST_RETRY_W
AIT_DURATION

FINERACT_PROCESS_PO
ST_INTEREST_RETRY_E
NABLE_EXPONENTIAL_
BACKOFF

FINERACT_PROCESS_PO

ST_INTEREST_RETRY_EX

PONENTIAL_BACKOFF_
MULTIPLIER

1s

true

2

Description

This property specifies
the list of exceptions
that the
recalculateInterest retry
instance will retry on

The number of attempts
that resilience4j will
attempt to run post
interest. Refer to
org.apache.fineract.port
folio.loanaccount.servic
e.
LoanWritePlatformServi
ceJpaRepositorylmpl#po
stinterest for more
details

The fixed time value
that the retry instance
will wait before the next
attempt can be made

If set to true, the wait-
duration will increase
exponentially between
each retry to post
interest

The multiplier for
exponential backoff, this
is useful only when
enable-exponential-
backoff is set to true

173

Name

resilience4j.retryinstan FINERACT PROCESS_PO
ces.postinterest.retryExc ST_INTEREST_RETRY_EX

eptions

174

Env Variable

CEPTIONS

Default Value Description

org.springframework.da This property specifies
o.ConcurrencyFailureEx the list of exceptions
ception,org.eclipse.persi that the post interest
stence.exceptions.Optim retry instance will retry
isticLockException,jakar on
ta.persistence.Optimistic

LockException,org.sprin

gframework.orm.jpa.Jpa

OptimisticLockingFailur

eException

Appendix B: Third Party Software

TBD

175

	Fineract Platform Documentation
	Table of Contents
	License
	Preface
	Introduction
	Platform for Digital Financial Services
	About
	Contribute
	Downloads
	Resources

	Deployment
	Plugins
	HTTPS
	Docker Compose
	Application Server
	Fineract Instance types
	Kubernetes
	AWS
	Google Cloud
	Apache Software Foundation Infrastructure

	Architecture
	History
	Resources
	System Overview
	Functional Overview
	Principles
	Design Overview
	Persistence
	Idempotency
	Validation
	Batch execution and jobs
	Loan account locking
	Technology
	Modules
	Introducing Business Date into Fineract - Community version
	Reliable event framework
	Introducing Advanced payment allocation

	Fineract Development Environment
	Git
	GPG
	Docker
	Gradle
	IDE
	Kubernetes
	Tools

	Custom Modules
	Introduction
	Custom Services
	Custom Business Steps
	Custom Loan Transaction Processors
	Custom Batch Jobs
	Custom Database Migration
	Deploying Custom Modules
	Outlook

	Resilience
	Introduction Resilience
	Command
	Jobs
	Loan
	Savings

	Security
	OAuth

	Testing
	Cucumber
	Unit Testing
	Integration Testing

	Fineract Documentation Guide
	File and Folder Layout
	AsciiDoc
	Diagrams
	Editor
	Antora

	Releases
	Configuration
	Release Process
	Maintenance Release Process
	Publish Release Artifacts

	Fineract SDKs
	Generate Apache Fineract API Client

	Frequently Asked Questions
	Glossary
	Index
	Appendix A: Fineract Application Properties
	Tenant Database Properties
	Hikari Connection Pool Properties
	SSL Properties
	Authentication Properties
	Tomcat Properties
	Kafka Properties
	Metrics Properties
	AWS Configuration Properties
	Resilience4j Properties

	Appendix B: Third Party Software

