

Fineract Platform Documentation
Version 1.11.0

Table of Contents

License. 1

Preface. 2

Introduction . 3

Platform for Digital Financial Services . 3

About . 3

Contribute . 3

Downloads . 3

Resources . 3

Deployment . 4

Plugins. 4

HTTPS . 4

Docker Compose . 5

Application Server . 5

Fineract Instance types . 5

Kubernetes. 10

AWS . 10

Google Cloud . 10

Apache Software Foundation Infrastructure . 10

Architecture . 11

History . 11

Resources . 11

System Overview . 12

Functional Overview. 13

Principles . 14

Design Overview . 16

Persistence . 21

Idempotency . 25

Validation . 26

Batch execution and jobs . 26

Loan account locking . 35

Technology. 36

Modules . 37

Introducing Business Date into Fineract - Community version . 37

Reliable event framework . 44

Introducing Advanced payment allocation . 60

Fineract Development Environment . 66

Git. 66

GPG . 66

Docker . 66

Gradle . 66

IDE . 66

Kubernetes. 67

Tools . 67

Custom Modules . 69

Introduction. 69

Custom Services . 71

Custom Business Steps . 74

Custom Loan Transaction Processors . 76

Custom Batch Jobs . 83

Custom Database Migration. 89

Deploying Custom Modules . 90

Outlook . 91

Resilience . 92

Introduction Resilience. 92

Command . 94

Jobs . 97

Loan. 99

Savings . 100

Security . 103

OAuth . 103

Testing . 105

Cucumber. 105

Unit Testing . 109

Integration Testing. 109

Fineract Documentation Guide . 110

File and Folder Layout . 110

AsciiDoc . 110

Diagrams . 120

Editor . 121

Antora . 122

Releases. 123

Configuration . 123

Release Process. 133

Maintenance Release Process . 148

Publish Release Artifacts . 149

Fineract SDKs. 151

Generate Apache Fineract API Client . 151

Frequently Asked Questions . 153

Glossary . 154

Index . 155

Appendix A: Fineract Application Properties . 156

Tenant Database Properties . 156

Hikari Connection Pool Properties . 158

SSL Properties . 162

Authentication Properties . 163

Tomcat Properties . 164

Kafka Properties. 165

Metrics Properties . 168

AWS Configuration Properties . 170

Resilience4j Properties . 170

Appendix B: Third Party Software . 175

License

Copyright 2022 Apache Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in

compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied. See the License for the specific language governing permissions and limitations

under the License.

1

Preface

© 2015-2025

Apache Fineract

Website: fineract.apache.org

Email: dev@fineract.apache.org

Version: 1.11.0

Built on: Fri Feb 28 11:45:13 PST 2025

For document authors and changelog, view code history for the fineract-doc directory in github.com/

apache/fineract/.

2

https://fineract.apache.org
mailto:dev@fineract.apache.org
https://github.com/apache/fineract/
https://github.com/apache/fineract/

Introduction

Platform for Digital Financial Services

See fineract.apache.org

About

See fineract.apache.org/#about

Contribute

See fineract.apache.org/#contribute

Downloads

See fineract.apache.org/#downloads

Resources

See fineract.apache.org/#resources

3

https://fineract.apache.org
https://fineract.apache.org/#about
https://fineract.apache.org/#contribute
https://fineract.apache.org/#downloads
https://fineract.apache.org/#resources

Deployment

Plugins

Apache Fineract is extensible through plugin JARs (FINERACT-1177; based on

Spring Boot’s support). To launch Fineract with plugin JARs in libs/*.jar, use:

java -Dloader.path=libs/ -jar fineract-provider.jar

The Fineract "Docker" container image’s ENTRYPOINT uses this, see our Dockerfile. You could therefore

build your customized Fineract distribution container image with your own Dockerfile using e.g. FROM

apache/fineract:latest and then drop some plugin JARs into /app/libs/.

The WAR distribution does not directly support such plugins, but one could "explode" the WAR and

drop JARs into WEB-INF/lib; if you know what you are doing, and feel nostalgic of the 1990s still using

WARs, instead of the recommended modern Spring Boot distribution.

Here is a list of known 3rd-party plugin projects which can be dropped into libs/:

• github.com/vorburger/fineract-pentaho



The reporting module became our first module experiment out of necessity. We are

currently developing a strategy to split up even more internals of Fineract into proper

modules. Those that have an incompatible license will be hosted in a separate Git

repository (probably on Github under the Mifos organisation). We’ll send out an

announcement as soon as we have more to say on this topic.

HTTPS

Because Apache Fineract deals with customer sensitive personally identifiable information (PII), it

very strongly encourages all developers, implementors and end-users to always only use HTTPS. This is

why it does not run on HTTP even for local development and enforces use of HTTPS.

For this purpose, Fineract includes a built-in default SSL certificate. This cert is intended for

development on localhost, only. It is not trusted by your browser (because it’s self signed).

For production deployments, we recommend running Fineract behind a modern managed cloud native

web proxy which includes SSL termination with automatically rotating SSL certificates, either using

your favourite cloud provider’s respective solution, or locally setting up the equivalent using e.g.

something like NGINX combined with Let’s Encrypt.

Such products, when correctly configured, add the conventional X-Forwarded-For and X-Forwarded-Proto

HTTP headers, which Fineract (or rather the Spring Framework really) correctly respects since

4

https://issues.apache.org/jira/browse/FINERACT-1177
https://docs.spring.io/spring-boot/docs/current/reference/html/appendix-executable-jar-format.html
https://github.com/vorburger/fineract-pentaho
https://letsencrypt.org

FINERACT-914 was fixed.

Alternatively, you could replace the built-in default SSL certificate with one you obtained from a

Certificate Authority. We currently do not document how to do this, because we do not recommend this

approach, as it’s cumbersome to configure and support and less secure than a managed auto rotating

solution.

The Fineract API client supports an insecure mode (FineractClient.Builder#insecure()), and API users

such as mobile apps may expose Settings to let end-users accept the self signed certificate. This should

always be used for testing only, never in production.

Docker Compose

TBD

Application Server

Tomcat

TBD

Undertow

TBD

Jetty

TBD

JBoss

TBD

Weblogic

TBD

Payara

TBD

Fineract Instance types

In cases where Fineract has to deal with high load, it can cause a performance problem for a single

Fineract instance.

5

https://issues.apache.org/jira/browse/FINERACT-914

To overcome this problem, Fineract instances can be started in different instance types for better

scalability and performance in a multi-instance environment:

Fineract instance types

• Read instance

• Write instance

• Batch instance

Each instance type comes with different restrictions. The specifics can be found in the table below.

Table 1. Instance types

Read instance Write instance Batch instance

Using only read-only DB

connection

Yes No No

Batch jobs are

automatically scheduled

or startable via API

No No Yes

Can receive events

(business events, hook

template events)

No Yes No

Can send events

(business events, hook

template events)

No Yes Yes

Read APIs supported Yes Yes No

Write APIs supported No Yes No

Batch job APIs

supported

No No Yes

Liquibase migration

initiated upon startup

No Yes No

Configuring instance types in single instance setup

If Fineract is running as a single instance, then all of the 3 instance types should be enabled. In this

case, there is no need to worry about the configuration, because this is the default behavior.

6

Configuring instance types in multi-instance setup

A common solution to dealing with the high load is to deploy 1 write and 1 batch instances and deploy

multiple read instances with read replicas of the Fineract database.

In this case, the write instance and the database will be freed from part of the load, because read

request will use the separated read instance and its read replica database.

Also a common scenario when Close of Business jobs are running and Fineract has to deal with a high

amount of processes.

(In a future release) Fineract (will be) is able to run this CoB jobs in batches.

In multi-instances environment these CoB jobs can run on multiple batch instances and they don’t

have any impact on the performance of the read and write processes.

The best practice is to deploy 1 master batch instance and multiple worker batch instances.

7

These solutions can be mixed with each other, based on the load of the Fineract deployment.

Configuring instance type via environment variables

The Fineract instance type is configurable via environment variables for the following 3 values:

Table 2. Environment variables

Instance type Environment variable

Read instance FINERACT_READ_MODE_ENABLED

Write instance FINERACT_WRITE_MODE_ENABLED

Batch instance FINERACT_BATCH_MODE_ENABLED

The environment variable values are booleans (true/false). The Fineract instance can be configured in

any combination of these instance types, although if all 3 configurations are false, startup will fail. The

default value for all 3 values is true.

The configured Fineract instance types are easily accessible via a single Spring bean, named

FineractProperties.FineractModeProperties that has 4 methods: isReadMode(), isWriteMode(),

isBatchMode(), isReadOnlyMode()

Liquibase Database Migration

Liquibase data migration is allowed only for write instances

APIs

Read APIs are allowed only for read and write instances

A Fineract instance is ONLY able to serve read API calls when it’s configured as a read or write

instance. In batch instance mode, it won’t serve read API calls.

If it’s a read or write instance, the read APIs will be served.

If it’s a batch instance, the read APIs won’t be served and a proper HTTP status code will be returned.

The distinction whether something is a read API can be decided based on the HTTP request method. If

8

it’s a GET, we can assume it’s a read call.

Write APIs are allowed only for write instances

A Fineract instance is ONLY able to serve write API calls when it’s configured as a write instance. In

read or batch instance mode, it won’t serve write API calls.

If the write APIs won’t be served and a proper HTTP status code will be returned.

If it’s a write instance, the write APIs will be served except the ones related to batch jobs.

The distinction whether something is a write API can be decided based on the HTTP request method. If

it’s non-GET, we can assume it’s a write call. Also, the write APIs related to batch jobs (starting/stopping

jobs) will not be served either.

Batch job APIs are allowed only for batch instances

A Fineract instance is ONLY able to serve batch API calls when it’s configured as a batch instance. In

read or write instance mode, it won’t serve batch API calls.

If the batch APIs won’t be served and a proper HTTP status code will be returned.

If it’s a batch instance, the batch APIs will be served.

Batch jobs

Batch job scheduling is allowed only for batch instances

Batch jobs are scheduled only if the Fineract instance running as a batch instance

Read-only instance type restrictions

If the read mode is enabled, but the write mode and batch mode are disabled, Fineract instance runs in

read-only mode.

Events are disabled for read-only instances

When a Fineract instance is running in read-only mode, all event receiving/sending will be disabled.

Read-only tenant connection support

With read separation, there’s a possibility to use read-only database connections for read-only

instances.

If the instance is read-only , the DataSource connection used for the tenant will be read-only.

If the instance is read-only and the configuration for the read-only datasource is not set, the

application startup will fail.

Batch-only instance type restrictions

If the batch mode is enabled, but the read mode and write mode are disabled, Fineract instance runs in

batch-only mode.

9

Receiving events is disabled for batch-only instances

When a Fineract instance is running as batch, event receiving will be disabled while sending events

will be still possible since the batch jobs are potentially generating business events.

Kubernetes

In a scaled Kubernetes environment where multiple Fineract instances are deployed, doing the

database migrations properly is essential.

Fineract provides a way to run only the Liquibase migrations instead of starting up the whole

application server so that you can easily do the migrations before actually upgrading a Fineract

instance.

The FINERACT_LIQUIBASE_ENABLED flag controls whether Liquibase is enabled or not. For regular

read/write/batch manager/batch worker instances this should be disabled.

There’s a special Spring profile that should be enabled for running Liquibase only. In can be done via

SPRING_PROFILES_ACTIVE environment variable. The profile name is liquibase-only. At the end of the

migration process, the application will exit.

For the instance running the Liquibase migrations, the profile should be activated.

AWS

TBD

Google Cloud

The www.fineract.dev demo server runs on Google Cloud.

The Running Fineract.dev, SRE style presentation given at ApacheCon 2020 has some related

background.

Apache Software Foundation Infrastructure

We can order a server from Apache’s infrastructure team and deploy a demo instance…

TBD

10

https://www.fineract.dev
https://docs.google.com/presentation/d/1-VP4bNkc5kZ3B0yme_vYLiY1qpswnfz8ainnX5fp3l8/

Architecture

This document captures the major architectural decisions in platform. The purpose of the document is

to provide a guide to the overall structure of the platform; where it fits in the overall context of an MIS

solution and its internals so that contributors can more effectively understand how changes that they

are considering can be made, and the consequences of those changes.

The target audience for this report is both system integrators (who will use the document to gain an

understanding of the structure of the platform and its design rationale) and platform contributors who

will use the document to reason about future changes and who will update the document as the system

evolves.

History

The Idea

Fineract was an idea born out of a wish to create and deploy technology that allows the microfinance

industry to scale. The goal is to:

• Produce a gold standard management information system suitable for microfinance operations

• Acts as the basis of a platform for microfinance

• Open source, owned and driven by member organisations in the community

• Enabling potential for eco-system of providers located near to MFIs

Timeline

• 2006: Project initiated by Grameen Foundation

• Late 2011: Grameen Foundation handed over full responsibility to open source community.

• 2012: Mifos X platform started. Previous members of project come together under the name of

Community for Open Source Microfinance (COSM / OpenMF)

• 2013: COSM / OpenMF officially rebranded to Mifos Initiative and receive US 501c3 status.

• 2016: Fineract 1.x began incubation at Apache

Resources

• Project URL is github.com/apache/fineract

• Issue tracker is issues.apache.org/jira/projects/FINERACT/summary

• Download from fineract.apache.org/

11

https://github.com/apache/fineract
https://issues.apache.org/jira/projects/FINERACT/summary
http://fineract.apache.org/

System Overview

Figure 1. Platform System Overview

Financial institutions deliver their services to customers through a variety of means today.

• Customers can call direct into branches (teller model)

• Customers can organise into groups (or centers) and agree to meetup at a location and time with FI

staff (traditional microfinance).

• An FI might have a public facing information portal that customers can use for variety of reasons

including account management (online banking).

• An FI might be integrated into a ATM/POS/Card services network that the customer can use.

• An FI might be integrated with a mobile money operator and support mobile money services for

customer (present/future microfinance).

• An FI might use third party agents to sell on products/services from other banks/FIs.

As illustrated in the above diagram, the various stakeholders leverage business apps to perform

specific customer or FI related actions. The functionality contained in these business apps can be

bundled up and packaged in any way. In the diagram, several of the apps may be combined into one

12

app or any one of the blocks representing an app could be further broken up as needed.

The platform is the core engine of the MIS. It hides a lot of the complexity that exists in the business

and technical domains needed for an MIS in FIs behind a relatively simple API. It is this API that frees

up app developers to innovate and produce apps that can be as general or as bespoke as FIs need them

to be.

Functional Overview

As ALL capabilities of the platform are exposed through an API, The API docs are the best place to view

a detailed breakdown of what the platform does. See online API Documentation.

Figure 2. Platform Functional Overview

At a higher level though we see the capabilities fall into the following categories:

• Infrastructure

◦ Codes

◦ Extensible Data Tables

◦ Reporting

• User Administration

◦ Users

◦ Roles

◦ Permissions

• Organisation Modelling

◦ Offices

◦ Staff

◦ Currency

13

• Product Configuration

◦ Charges

◦ Loan Products

◦ Deposit Products

• Client Data

◦ Know Your Client (KYC)

• Portfolio Management

◦ Loan Accounts

◦ Deposit Accounts

◦ Client/Groups

• GL Account Management

◦ Chart of Accounts

◦ General Ledger

Principles

RESTful API

The platform exposes all its functionality via a practically-RESTful API, that communicates using

JSON.

We use the term practically-RESTful in order to make it clear we are not trying to be fully REST

compliant but still maintain important RESTful attributes like:

• Stateless: platform maintains no conversational or session-based state. The result of this is ability to

scale horizontally with ease.

• Resource-oriented: API is focussed around set of resources using HTTP vocabulary and conventions

e.g GET, PUT, POST, DELETE, HTTP status codes. This results in a simple and consistent API for

clients.

See online API Documentation for more detail.

Multi-tenanted

The Fineract platform has been developed with support for multi-tenancy at the core of its design. This

means that it is just as easy to use the platform for Software-as-a-Service (SaaS) type offerings as it is

for local installations.

The platform uses an approach that isolates an FIs data per database/schema (See Separate Databases

and Shared Database, Separate Schemas).

14

Extensible

Whilst each tenant will have a set of core tables, the platform tables can be extended in different ways

for each tenant through the use of Data tables functionality.

Command Query Separation

We separate commands (that change data) from queries (that read data).

Why? There are numerous reasons for choosing this approach which at present is not an attempt at

full blown CQRS. The main advantages at present are:

• State changing commands are persisted providing an audit of all state changes.

• Used to support a general approach to maker-checker.

• State changing commands use the Object-Oriented paradigm (and hence ORM) whilst querys can

stay in the data paradigm.

Maker-Checker

Also known as four-eyes principal. Enables apps to support a maker-checker style workflow process.

Commands that pass validation will be persisted. Maker-checker can be enabled/disabled at fine-

grained level for any state changing API.

Fine grained access control

A fine grained permission is associated with each API. Administrators have fine grained control over

what roles or users have access to.

Package Structure

The intention is for platform code to be packaged in a vertical slice way (as opposed to layers).

Source code starts from github.com/apache/fineract/tree/develop/fineract-provider/src/main/java/org/

apache/fineract

• accounting

• useradministration

• infrastructure

• portfolio

◦ charge

◦ client

◦ fund

◦ loanaccount

• accounting

15

https://github.com/apache/fineract/tree/develop/fineract-provider/src/main/java/org/apache/fineract
https://github.com/apache/fineract/tree/develop/fineract-provider/src/main/java/org/apache/fineract

Within each vertical slice is some common packaging structure:

• api - XXXApiResource.java - REST api implementation files

• handler - XXXCommandHandler.java - specific handlers invoked

• service - contains read + write services for functional area

• domain - OO concepts for the functional area

• data - Data concepts for the area

• serialization - ability to convert from/to API JSON for functional area

Design Overview



The implementation of the platform code to process commands through handlers

whilst supporting maker-checker and authorisation checks is a little bit convoluted at

present and is an area pin-pointed for clean up to make it easier to on board new

platform developers. In the mean time below content is used to explain its workings

at present.

Figure 3. CQRS

Taking into account example shown above for the users resource.

• Query: GET /users

16

• HTTPS API: retrieveAll method on

org.apache.fineract.useradministration.api.UsersApiResource invoked

• UsersApiResource.retrieveAll: Check user has permission to access this resources data.

• UsersApiResource.retrieveAll: Use 'read service' to fetch all users data ('read services' execute

simple SQL queries against Database using JDBC)

• UsersApiResource.retrieveAll: Data returned to converted into JSON response

• Command: POST /users (Note: data passed in request body)

• HTTPS API: create method on org.apache.fineract.useradministration.api.UsersApiResource

invoked

UsersApiResource.create

 return this.toApiJsonSerializer.serialize(result);

 }

 @PUT

 @Path("{userId}")

 @Operation(summary = "Update a User", description = "When updating a password you

must provide the repeatPassword parameter also.")

 @RequestBody(required = true, content = @Content(schema = @Schema(implementation =

UsersApiResourceSwagger.PutUsersUserIdRequest.class)))

 @ApiResponses({

 @ApiResponse(responseCode = "200", description = "OK", content = @Content

(schema = @Schema(implementation = UsersApiResourceSwagger.PutUsersUserIdResponse.class)

)) })

 @Consumes({ MediaType.APPLICATION_JSON })

 @Produces({ MediaType.APPLICATION_JSON })

 public String update(@PathParam("userId") @Parameter(description = "userId") final

Long userId,

 @Parameter(hidden = true) final String apiRequestBodyAsJson) {

 final CommandWrapper commandRequest = new CommandWrapperBuilder() //

 .updateUser(userId) //

 .withJson(apiRequestBodyAsJson) //

 .build();

 final CommandProcessingResult result = this.commandsSourceWritePlatformService

.logCommandSource(commandRequest);

Create a CommandWrapper object that represents this create user command and JSON request body. Pass off

responsibility for processing to PortfolioCommandSourceWritePlatformService.logCommandSource

 validateIsUpdateAllowed();

17

 final String json = wrapper.getJson();

 final JsonElement parsedCommand = this.fromApiJsonHelper.parse(json);

 JsonCommand command = JsonCommand.from(json, parsedCommand, this

.fromApiJsonHelper, wrapper.getEntityName(), wrapper.getEntityId(),

 wrapper.getSubentityId(), wrapper.getGroupId(), wrapper.getClientId(),

wrapper.getLoanId(), wrapper.getSavingsId(),

 wrapper.getTransactionId(), wrapper.getHref(), wrapper.getProductId(),

wrapper.getCreditBureauId(),

 wrapper.getOrganisationCreditBureauId(), wrapper.getJobName(), wrapper

.getLoanExternalId());

 return this.processAndLogCommandService.executeCommand(wrapper, command,

isApprovedByChecker);

 }

 @Override

 public CommandProcessingResult approveEntry(final Long makerCheckerId) {

 final CommandSource commandSourceInput = validateMakerCheckerTransaction

(makerCheckerId);

 validateIsUpdateAllowed();

 final CommandWrapper wrapper = CommandWrapper.fromExistingCommand(makerCheckerId,

commandSourceInput.getActionName(),

 commandSourceInput.getEntityName(), commandSourceInput.getResourceId(),

commandSourceInput.getSubResourceId(),

 commandSourceInput.getResourceGetUrl(), commandSourceInput.getProductId(

), commandSourceInput.getOfficeId(),

 commandSourceInput.getGroupId(), commandSourceInput.getClientId(),

commandSourceInput.getLoanId(),

 commandSourceInput.getSavingsId(), commandSourceInput.getTransactionId(),

commandSourceInput.getCreditBureauId(),

 commandSourceInput.getOrganisationCreditBureauId(), commandSourceInput

.getIdempotencyKey(),

 commandSourceInput.getLoanExternalId());

 final JsonElement parsedCommand = this.fromApiJsonHelper.parse(

commandSourceInput.getCommandAsJson());

 final JsonCommand command = JsonCommand.fromExistingCommand(makerCheckerId,

commandSourceInput.getCommandAsJson(), parsedCommand,

 this.fromApiJsonHelper, commandSourceInput.getEntityName(),

commandSourceInput.getResourceId(),

 commandSourceInput.getSubResourceId(), commandSourceInput.getGroupId(),

commandSourceInput.getClientId(),

 commandSourceInput.getLoanId(), commandSourceInput.getSavingsId(),

commandSourceInput.getTransactionId(),

 commandSourceInput.getResourceGetUrl(), commandSourceInput.getProductId(

), commandSourceInput.getCreditBureauId(),

 commandSourceInput.getOrganisationCreditBureauId(), commandSourceInput

.getJobName(),

18

 commandSourceInput.getLoanExternalId());

 return this.processAndLogCommandService.executeCommand(wrapper, command, true);

 }

 @Transactional

 @Override

 public Long deleteEntry(final Long makerCheckerId) {

 validateMakerCheckerTransaction(makerCheckerId);

 validateIsUpdateAllowed();

 this.commandSourceRepository.deleteById(makerCheckerId);

 return makerCheckerId;

 }

 private CommandSource validateMakerCheckerTransaction(final Long makerCheckerId) {

 final CommandSource commandSource = this.commandSourceRepository.findById

(makerCheckerId)

 .orElseThrow(() -> new CommandNotFoundException(makerCheckerId));

 if (!commandSource.isMarkedAsAwaitingApproval()) {

 throw new CommandNotAwaitingApprovalException(makerCheckerId);

 }

 AppUser appUser = this.context.authenticatedUser();

 String permissionCode = commandSource.getPermissionCode();

 appUser.validateHasCheckerPermissionTo(permissionCode);

 if (!configurationService.isSameMakerCheckerEnabled() && !appUser

.isCheckerSuperUser()) {

 AppUser maker = commandSource.getMaker();

 if (maker == null) {

 throw new UnsupportedCommandException(permissionCode, "Maker user is

missing.");

Check user has permission for this action. if ok, a) parse the json request body, b) create a JsonCommand object

to wrap the command details, c) use CommandProcessingService to handle command

 @Retry(name = "executeCommand", fallbackMethod = "fallbackExecuteCommand")

 public CommandProcessingResult executeCommand(final CommandWrapper wrapper, final

JsonCommand command,

 final boolean isApprovedByChecker) {

 // Do not store the idempotency key because of the exception handling

 setIdempotencyKeyStoreFlag(false);

 Long commandId = (Long) fineractRequestContextHolder.getAttribute

(COMMAND_SOURCE_ID, null);

 boolean isRetry = commandId != null;

19

 boolean isEnclosingTransaction = BatchRequestContextHolder.

isEnclosingTransaction();

 CommandSource commandSource = null;

 String idempotencyKey;

 if (isRetry) {

 commandSource = commandSourceService.getCommandSource(commandId);

 idempotencyKey = commandSource.getIdempotencyKey();

 } else if ((commandId = command.commandId()) != null) { // action on the command

itself

 commandSource = commandSourceService.getCommandSource(commandId);

 idempotencyKey = commandSource.getIdempotencyKey();

 } else {

 idempotencyKey = idempotencyKeyResolver.resolve(wrapper);

 }

 exceptionWhenTheRequestAlreadyProcessed(wrapper, idempotencyKey, isRetry);

 AppUser user = context.authenticatedUser(wrapper);

 if (commandSource == null) {

 if (isEnclosingTransaction) {

 commandSource = commandSourceService.getInitialCommandSource(wrapper,

command, user, idempotencyKey);

 } else {

 commandSource = commandSourceService.saveInitialNewTransaction(wrapper,

command, user, idempotencyKey);

 commandId = commandSource.getId();

 }

 }

 if (commandId != null) {

 storeCommandIdInContext(commandSource); // Store command id as a request

attribute

 }

 boolean isMakerChecker = configurationDomainService.isMakerCheckerEnabledForTask

(wrapper.taskPermissionName());

 if (isApprovedByChecker || (isMakerChecker && user.isCheckerSuperUser())) {

 commandSource.markAsChecked(user);

 }

 setIdempotencyKeyStoreFlag(true);

 final CommandProcessingResult result;

 try {

 result = commandSourceService.processCommand(findCommandHandler(wrapper),

command, commandSource, user, isApprovedByChecker,

 isMakerChecker);

 } catch (Throwable t) { // NOSONAR

 RuntimeException mappable = ErrorHandler.getMappable(t);

 ErrorInfo errorInfo = commandSourceService.generateErrorInfo(mappable);

20

 Integer statusCode = errorInfo.getStatusCode();

 commandSource.setResultStatusCode(statusCode);

 commandSource.setResult(errorInfo.getMessage());

 if (statusCode != SC_OK) {

 commandSource.setStatus(ERROR.getValue());

 }

 if (!isEnclosingTransaction) { // TODO: temporary solution

 commandSource = commandSourceService.saveResultNewTransaction

(commandSource);

 }

 // must not throw any exception; must persist in new transaction as the

current transaction was already

 // marked as rollback

 publishHookErrorEvent(wrapper, command, errorInfo);

 throw mappable;

 }

 commandSource.setResultStatusCode(SC_OK);

 commandSource.updateForAudit(result);

 commandSource.setResult(toApiResultJsonSerializer.serializeResult(result));


if a RollbackTransactionAsCommandIsNotApprovedByCheckerException occurs at

this point. The original transaction will of been aborted and we only log an entry for

the command in the audit table setting its status as 'Pending'.

• Check that if maker-checker configuration enabled for this action. If yes and this is not a 'checker'

approving the command - rollback at the end. We rollback at the end in order to test if the

command will pass 'domain validation' which requires commit to database for full check.

• findCommandHandler - Find the correct Handler to process this command.

• Process command using handler (In transactional scope).

• CommandSource object created/updated with all details for logging to

'm_portfolio_command_source' table.

• In update scenario, we check to see if there where really any changes/updates. If so only JSON for

changes is stored in audit log.

Persistence

TBD

Database support

Fineract supports multiple databases:

• MySQL compatible databases (e.g. MariaDB)

21

• PostgreSQL

The platform differentiates between these database types in certain cases when there’s a need to use

some database specific tooling. To do so, the platform examines the JDBC driver used for running the

platform and tries to determine which database is being used.

The currently supported JDBC driver and corresponding mappings can be found below.

JDBC driver class name Resolved database type

org.mariadb.jdbc.Driver MySQL

com.mysql.jdbc.Driver MySQL

org.postgresql.Driver PostgreSQL

The actual code can be found in the DatabaseTypeResolver class.

Tenant database security

The tenant database schema password is stored in the tenant_server_connections table in the tenant

database.

The password and the read only schema password are encrypted using the fineract.tenant.master-

password property.

By default, the database property will be encrypted in the first start from a plane text.

When you want to generate a new encrypted password, you can use the

org.apache.fineract.infrastructure.core.service.database.DatabasePasswordEncryptor class.

Database password encryption usage

java -cp fineract-provider.jar -Dloader.main=org.apache.fineract.infrastructure.core

.service.database.DatabasePasswordEncryptor org.springframework.boot.loader

.PropertiesLauncher <masterPassword> <plainPassword>

For example:

java -cp fineract-provider-0.0.0-48f7e315.jar -Dloader.main=org.apache.fineract

.infrastructure.core.service.database.DatabasePasswordEncryptor org.springframework.boot

.loader.PropertiesLauncher fineract-master-password fineract-tenant-password

The encrypted password: VLwGl7vOP/q275ZTku+PNGWnGwW4mzzNHSNaO9Pr67WT5

/NZMpBr9tGYYiYsqwL1eRew2jl7O3/N1EFbLlXhSA==

Data-access layer

The data-access layer of Fineract is implemented by using JPA (Java Persistence API) with the

22

EclipseLink provider.

Despite the fact that JPA is used quite extensively in the system, there are cases where the performance

is a key element for an operation therefore you can easily find native SQLs as well.

The data-access layer of Fineract is compatible with different databases. Since a lot of the native

queries are using specific database functions, a wrapper class - DatabaseSpecificSQLGenerator - has

been introduced to handle these database specifics. Whenever there’s a need to rely on new database

level functions, make sure to extend this class and implement the specific functions provided by the

database.

Fineract has been developed for 10+ years by the community and unfortunately there are places

where entity relationships are configured with EAGER fetching strategy. This must not confuse anybody.

The long-term goal is to use the LAZY fetching strategy for every single relationship. If you’re about to

introduce a new one, make sure to use LAZY as a fetching strategy, otherwise your PR will be rejected.

Database schema migration

As for every system, the database structure will and need to evolve over time. Fineract is no different.

Originally for Fineract, Flyway was used until Fineract 1.6.x.

After 1.6.x, PostgreSQL support was added to the platform hence there was a need to make the data-

access layer and the schema migration as database independent as possible. Because of that, from

Fineract 1.7.0, Flyway is not used anymore but Liquibase is.

Some of the changesets in the Liquibase changelogs have database specifics into it but they only run

for the relevant databases. This is controller by Liquibase contexts.

The currently available Liquibase contexts are:

• mysql - only set when the database is a MySQL compatible database (e.g. MariaDB)

• postgresql - only set when the database is a PostgreSQL database

• configured Spring active profiles

• tenant_store_db - only set when the database migration runs the Tenant Store upgrade

• tenant_db - only set when the database migration runs the Tenant upgrade

• initial_switch - this is a technical context and should NOT be used

The switch from Flyway (1.6.x) to Liquibase (1.7.x) was planned to be as smooth as possible so there’s

no need for manual work hence the behavior is described as following:

• If the database is empty, Liquibase will create the database schema from scratch

• If the database contains the latest Fineract 1.6.x database structure which was previously migrated

with Flyway. Liquibase will seamlessly upgrade it to the latest version. Note: the Flyway related 2

database tables are left as they are and are not deleted.

• If the database contains an earlier version of the database structure than Fineract 1.6.x. Liquibase

23

will NOT do anything and will fail the application during startup. The proper approach in this

case is to first upgrade your application version to the latest Fineract 1.6.x so that the latest Flyway

changes are executed and then upgrade to the newer Fineract version where Liquibase will

seamlessly take over the database upgrades.

Troubleshooting

1. During upgrade from Fineract 1.5.0 to 1.6.0, Liquibase fails

After dropping the flyway migrations table (schema_version), Liquibase runs its

own migrations which fails (in recreating tables which already exist) because

we are aiming to re-use DB with existing data from Fineract 1.5.0.

Solution: The latest release version (1.6.0) doesn’t have Liquibase at all, it

still runs Flyway migrations. Only the develop branch (later to be 1.7.0) got

switched to Liquibase. Do not pull the develop before upgrading your instance.

Make sure first you upgrade your instance (aka database schema with Fineract 1.6.0).

Then upgrade with the current develop branch. Check if some migration scripts

did not run which led to some operations failing due to slight differences in

schema. Try with running the missing migrations manually.

Note: develop is considered unstable until released.

1. Upgrading database from MySQL 5.7 as advised to Maria DB 10.6, fails. If we

use data from version 18.03.01 it fails to migrate the data. If we use databases

running on 1.5.0 release it completes the startup but the system login fails.

Solution: A database upgrade is separate thing to take care of.

1. We are getting ScehmaUpgradeNeededException: Make sure to upgrade to Fineract

1.6 first and then to a newer version error while upgrading to tag 1.6.

1.6 version shouldn’t include Liquibase. It will only be released after 1.6.

Make sure Liquibase is dropping schema_version table, as there is no Flyway

it is not required. Drop Flyway and use Liquibase for both migrations and

database independence. In case, if you still get errors, you can use git SHA

746c589a6e809b33d68c0596930fcaa7338d5270 and Flyway migration will be done to

the latest.

TENANT_LATEST_FLYWAY_VERSION = 392;

TENANT_LATEST_FLYWAY_SCRIPT_NAME =

"V392__interest_recovery_conf_for_rescedule.sql";

TENANT_LATEST_FLYWAY_SCRIPT_CHECKSUM = 1102395052;

24

Idempotency

Idempotency is the way to make sure your specific action is only executed once.

For example, if you have a button that is supposed to send a repayment, you don’t want to repayment

twice if the user clicks the button twice. Idempotency is a way to make sure that the action is only

executed once.

There are two ways to use idempotency:

• HTTP Request with idempotency key header

• Batch request with batch item header

How it works

The idempotency key with action name and entity name is unique, and identify a specific command in

the system.

If no idempotency key is assigned to the request, the system will generate one for you.

1. User send a request

2. The system checks there are already executed commands with the same idempotency key and action

name and entity name

3. The action based on the result of the check

◦ If the request is completed the system return with the already generated result

◦ If not completed, return HTTP 409 response

◦ If the request is not completed, we process the requests and store the results in the database

Idempotency in HTTP requests

To achieve idempotency in HTTP requests, you can use the HTTP header from fineract.idempotency-

key-header-name configuration variables (default Idemptency-Key). This header is a unique identifier for

the request. If you send the same request twice, the second request will be ignored and the response

from the first request will be returned.

Idempotency in Batch requests

In batch requests, you can set the idempotency key for every batch item, in the batch item header fields.

The header key is from fineract.idempotency-key-header-name configuration variables (default

Idemptency-Key).

Result of the request

• When the request is already executed and completed, the system will return a x-served-from-cache

header with the value true in the response and return the original request body.

25

• When the request is already executed but still not completed, the system will return to HTTP 409

error code

• When the request is not executed, the system runs it normally and stores the result in the date

Validation

Programmatic

Use the DataValidatorBuilder, e.g. like so:

new DataValidatorBuilder().resource("fileUpload")

 .reset().parameter("Content-Length").value(contentLength).notBlank()

.integerGreaterThanNumber(0)

 .reset().parameter("FormDataContentDisposition").value(fileDetails).notNull()

 .throwValidationErrors();

Such code is often encapsulated in *Validator classes (if more than a few lines, and/or reused from

several places; avoid copy/paste), like so:

public class YourThingValidator {

 public void validate(YourThing thing) {

 new DataValidatorBuilder().resource("yourThing")

 ...

 .throwValidationErrors();

 }

}

Declarative

[FINERACT-1229](issues.apache.org/jira/browse/FINERACT-1229) is an open issue about adopting Bean

Validation for declarative instead of programmatic (as above) validation. Contributions welcome!

Batch execution and jobs

Just like any financial system, Fineract also has batch jobs to achieve some processing on the data

that’s stored in the system.

The batch jobs in Fineract are implemented using Spring Batch. In addition to the Spring Batch

ecosystem, the automatic scheduling is done by the Quartz Scheduler but it’s also possible to trigger

batch jobs via regular APIs.

26

https://github.com/apache/fineract/search?q=%22class+DataValidatorBuilder%22
https://github.com/apache/fineract/search?q=Validator
https://issues.apache.org/jira/browse/FINERACT-1229
https://docs.spring.io/spring-batch/docs/current/reference/html/
http://www.quartz-scheduler.org/

Glossary

Job A Job is an object that encapsulates an entire

batch process.

Step A Step is an object that encapsulates an

independent phase of a Job.

Chunk oriented processing Chunk oriented processing refers to reading the

data one at a time and creating 'chunks' that are

written out within a transaction boundary.

Partitioning Partitioning refers to the high-level idea of

dividing your data into so called partitions and

distributing the individual partitions among

Workers. The splitting of data and pushing work

to Workers is done by a Manager.

Remote partitioning Remote partitioning is a specialized partitioning

concept. It refers to the idea of distributing the

partitions among multiple JVMs mainly by using a

messaging middleware.

Manager node The Manager node is one of the objects taking a

huge part when using partitioning. The Manager

node is responsible for dividing the dataset into

partitions and keeping track of all the divided

partitions' Worker execution. When all Workers

nodes are done with their partitions, the Manager

will mark the corresponding Job as completed.

Worker node A Worker node is the other important party in the

context of partitioning. The Worker node is the

one executing the work needed for a single

partition.

Batch jobs in Fineract

Types of jobs

The jobs in Fineract can be divided into 2 categories:

• Normal batch jobs

• Partitionable batch jobs

Most of the jobs are normal batch jobs with limited scalability because Fineract is still passing through

the evolution on making most of them capable to process a high-volume of data.

27

List of jobs

Job name Active by default Partitionable Description

LOAN_CLOSE_OF_BUSIN

ESS

No Yes TBD

Batch job execution

State management

State management for the batch jobs is done by the Spring Batch provided state management. The data

model consists of the following database structure:

The corresponding database migration scripts are shipped with the Spring Batch core module under

the org.springframework.batch.core package. They are only available as native scripts and are named

as schema-.sql where is the short name of the database platform. For MySQL it’s called schema-

mysql.sql and for PostgreSQL it’s called schema-postgresql.sql.

28

When Fineract is started, the database dependent schema SQL script will be picked up according to the

datasource configurations.

Chunk oriented processing

Chunking data has not been easier. Spring Batch does a really good job at providing this capability.

In order to save resources when starting/committing/rollbacking transactions for every single

processed item, chunking shall be used. That way, it’s possible to mark the transaction boundaries for a

single processed chunk instead of a single item processing. The image below describes the flow with a

very simplistic example.

In addition to not opening a lot of transactions, the processing could also benefit from JDBC batching.

The last step - writing the result into the database - collects all the processed items and then writes it to

the database; both for MySQL and PostgreSQL (the databases supported by Fineract) are capable of

grouping multiple DML (INSERT/UPDATE/DELETE) statements and sending them in one round-trip,

optimizing the data being sent over the network and granting the possibility to the underlying

database engine to enhance the processing.

Remote partitioning

Spring Batch provides a really nice way to do remote partitioning. The 2 type of objects in this setup is

a manager node - who splits and distributes the work - and a number of worker nodes - who picks up

the work.

In remote partitioning, the worker instances are receiving the work via a messaging system as soon as

the manager splits up the work into smaller pieces.

29

Remote partitioning could be done 2 ways in terms of keeping the job state up-to-date. The main

difference between the two is how the manager is notified about partition completions.

One way is that they share the same database. When the worker does something to a partition - for

example picks it up for processing - it updates the state of that partition in the database. In the

meantime, the manager regularly polls the database until all partitions are processed. This is

visualized in the below diagram.

An alternative approach to this - when the database is not intended to be shared between manager and

workers - is to use a messaging system (could be the same as for distributing the work) and the

workers could send back a message to the manager instance, therefore notifying it about

failure/completion. Then the manager can simply keep the database state up-to-date.

Even though the alternative solution decouples the workers even better, we thought it’s not necessary

to add the complexity of handling reply message channel to the manager.

Also, please note that the partitioned job execution is multitenant meaning that the workers will

receive which tenant it should do the processing for.

30

Supported message channels

For remote partitioning, the following message channels are supported by Fineract:

• Any JMS compatible message channels (ActiveMQ, Amazon MQ, etc)

• Apache Kafka

Fault-tolerance scenarios

There are multiple fault tolerance use-cases that this solution must and will support:

1. If the manager fails during partitioning

2. If the manager completes the partitioning and the partition messages are sent to the broker but

while the manager is waiting for the workers to finish, the manager fails

3. If the manager runs properly and during a partition processing a worker instance fails

In case of scenario 1), the simple solution is to re-trigger the job via API or via the Quartz scheduler.

In case of scenario 2), there’s no out-of-the-box solution by Spring Batch. Although there’s a custom

mechanism in place that’ll resume the job upon restarting the manager. There are 2 cases in the

context of this scenario:

• If all the partitions have been successfully processed by workers

• If not all the partitions have been processed by the workers

In the first case, we’ll simply mark the stuck job as FAILED along with it’s partitioning step and instruct

Spring Batch to restart the job. The behavior in this case will be that Spring Batch will spawn a new job

execution but will notice that the partitions have all been completed so it’s not going to execute them

once more.

In the latter case, the same will happen as for the first one but before marking the job execution as

FAILED, we’ll wait until all partitions have been completed.

31

In case of scenario 3), another worker instance will take over the partition since it hasn’t been finished.

Configurable batch jobs

There’s another type of distinction on the batch jobs. Some of them are configurable in terms of their

behavior.

The currently supported configurable batch jobs are the following:

• LOAN_CLOSE_OF_BUSINESS

The behavior of these batch jobs are configurable. There’s a new terminology we’re introducing called

business steps.

Business steps

Business steps are a smaller unit of work than regular Spring Batch Steps and the two are not meant to

be mixed up because there’s a large difference between them.

A Spring Batch Step’s main purpose is to decompose a bigger work into smaller ones and making sure

that these smaller Steps are properly handled within a single database transaction.

32

In case of a business step, it’s a smaller unit of work. Business steps live within a Spring Batch Step.

Fundamentally, they are simple classes that are implementing an interface with a single method that

contains the business logic.

Here’s a very simple example:

public class MyCustomBusinessStep implements BusinessStep<Loan> {

 @Override

 public Loan process(Loan loan) {

 // do something

 }

}

public class LoanCOBItemProcessor implements ItemProcessor<Loan, Loan> {

 @Override

 public Loan process(Loan loan) {

 List<BusinessStep<Loan>> bSteps = getBusinessSteps();

 Loan result = loan;

 for (BusinessStep<Loan> bStep : bSteps) {

 result = bStep.process(result);

 }

 return result;

 }

}

Business step configuration

The business steps are configurable for certain jobs. The reason for that is because we want to allow

the possibility for Fineract users to configure their very own business logic for generic jobs, like the

Loan Close Of Business job where we want to do a formal "closing" of the loans at the end of the day.

All countries are different with a different set of regulations. However in terms of behavior, there’s no

all size fits all for loan closing.

For example in the United States of America, you might need the following logic for a day closing:

1. Close fully repaid loan accounts

2. Apply penalties

3. Invoke IRS API for regulatory purposes

While in Germany it should be:

1. Close fully repaid loan accounts

2. Apply penalties

33

3. Do some fraud detection on the account using an external service

4. Invoke local tax authority API for regulatory purposes

These are just examples, but you get the idea.

The business steps are configurable through APIs:

Retrieving the configuration for a job:

GET /fineract-provider/api/v1/jobs/{jobName}/steps?tenantIdentifier={tenantId}

HTTP 200

{

 "jobName": "LOAN_CLOSE_OF_BUSINESS",

 "businessSteps": [

 {

 "stepName": "APPLY_PENALTY_FOR_OVERDUE_LOANS",

 "order": 1

 },

 {

 "stepName": "LOAN_TAGGING",

 "order": 2

 }

]

}

Updating the business step configuration for a job:

PUT /fineract-provider/api/v1/jobs/{jobName}/steps?tenantIdentifier={tenantId}

{

 "businessSteps": [

 {

 "stepName": "LOAN_TAGGING",

 "order": 1

 },

 {

 "stepName": "APPLY_PENALTY_FOR_OVERDUE_LOANS",

 "order": 2

 }

]

}

The business step configuration for jobs are tracked within the database in the m_batch_business_steps

table.

34

Inline Jobs

Some jobs that work with business entities have a corresponding job that can trigger the job with a list

of specified entities.

When the Inline job gets triggered then the corresponding existing job will run in real time with the

given entities as a dataset.

List of Inline jobs

Inline Job name Corresponding Job

LOAN_COB LOAN_CLOSE_OF_BUSINESS

Triggering the Inline Loan COB Job:

POST /fineract-provider/api/v1/jobs/LOAN_COB/inline?tenantIdentifier={tenantId}

{

 "loanIds": [

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

]

}

In this case the Loan COB job will work only with the given loan IDs.

Global Configuration for enabling/disabling jobs

Some jobs can be enabled/disabled with global configuration.

If the job is disabled with the global configuration then it cannot be scheduled and cannot be triggered

via API.

List of jobs with global configuration

Job name Application property Environment variable Default value

LOAN_CLOSE_OF_BUSIN

ESS

fineract.job.loan-cob-

enabled

FINERACT_JOB_LOAN_C

OB_ENABLED

true

Loan account locking

Keeping a consistent state of loan accounts become quite important when we start talking about doing

a business day closing each day for loans.

There are 2 concepts for loan account locking:

1. Soft-locking loan accounts

35

2. Hard-locking loan accounts

Soft-locking simply means that when the Loan COB has been kicked off but workers not yet processing

the chunk of loan accounts (i.e. the partition is waiting in the queue to be picked up) and during this

time a real-time write request (e.g. a repayment/disbursement) comes in through the API, we simply do

an "inlined" version of the Loan COB for that loan account. From a practical standpoint this will mean

that before doing the actual repayment/disbursement on the loan account on the API, we execute the

Loan COB for that loan account, kind of like prioritizing it.

Hard-locking means that when a worker picks up the loan account in the chunk, real-time write

requests on those loan accounts will be simply rejected with an HTTP 409.

The locking is strictly tied to the Loan COB job’s execution but there could be other processes in the

future which might want to introduce new type of locks for loans.

The loan account locking is solved by maintaining a database table which stores the locked accounts,

it’s called m_loan_account_locks.

When a loan account is present in the table above, it simply means there’s a lock applied to it and

whether it’s a soft or hard lock can be determined by the lock_owner column.

And when a loan account is locked, loan related write API calls will be either rejected or will trigger an

inline Loan COB execution. There could be a corner case here when the Loan COB fails to process some

loan accounts (due to a bug, inconsistency, etc) and the loan accounts stay locked. This is an intended

behavior to mark loans which are not supposed to be used until they are "fixed".

Since the fixing might involve making changes to the loan account via API (for example doing a

repayment to fix the loan account’s inconsistent state), we need to allow those API calls. Hence, the

lock table includes a bypass_enabled column which disables the lock checks on the loan write APIs.

Technology

• Java: www.oracle.com/technetwork/java/javase/downloads/index.html

• JAX-RS using Jersey

• JSON using Google GSON

• Spring I/O Platform: spring.io/platform

◦ Spring Framework

◦ Spring Boot

◦ Spring Security

◦ Spring Data (JPA) backed by EclipseLink

• MySQL: www.oracle.com/us/products/mysql/overview/index.html

• PostgreSQL

36

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://spring.io/platform
http://www.oracle.com/us/products/mysql/overview/index.html

TBD

Modules

We are currently working towards a fully modular codebase and will publish more here when we are

ready.


Even if we are not quite there yet with full modularity you can already create your

own custom modules to extend Fineract. Please see chapter Custom Modules.

Introducing Business Date into Fineract - Community

version

Business date as a concept does not exist as of now in Fineract. It would be business critical to add such

a functionality to support various banking functionalities like “Closing of Business day”, “Having

Closing of Business day relevant jobs”, “Supporting logical date management”.

Glossary

*COB Close of Business; concept of closing a business

day

*Business day Timeframe that logically group together actions

on a particular business date

*Business date Logical date; its value is not tied to the physical

calendar. Represents a business day

*Cob date Logical date; Represents the business date for

actions during COB job execution

*Created date When the transaction was created (audit

purposes). Date + time

*Last modified date When the transaction was last modified (audit

purposes). Date + time

*Submitted on date / Posting date When the transaction was posted. Tenant date or

business date (depends on whether the logical

date concept was introduced or not)

*Transaction date / Value date The date on which the transaction occurred or to

be accounted for

Current behaviour

• Fineract support 3 types of dates:

37

◦ System date

▪ Physical/System date of the running environment

◦ Tenant date

▪ Timezoned version of the above system date

◦ User-provided date

▪ Based on the provided date (as string) and the provided date format

• There is no support of logical date concept

◦ Independent from the system / tenant date

• Jobs are scheduled against system date (CRON), but aligned with the tenant timezone.

• During the job execution all the data and transactions are using the actual tenant date

◦ It could happen some transactions are written for 17th of May and other for 18th of May, if the

job was executed around midnight

• There is no support of COB

◦ No backdated transactions by jobs

◦ There is no support to logically group together transactions and store them with the same

transaction date which is independent of the physical calendar of the tenant

• All the transactions and business logic are tied to a physical calendar

Business date

38

Design

By introducing the business day concept we are not tied anymore to the physical calendar of the

system or the tenant. We got the ability to define our own business day boundaries which might end 15

minutes before midnight and any incoming transactions after the cutoff will be accounted for the

following business day.

It is a logical date which makes it possible to separate the business day from the physical calendar:

39

• Close a business day before midnight

• Close a business day at midnight

• Close a business day after midnight

Closing a Business Day could be a longer process (see COB jobs) meanwhile some processes shall still

be able to create transactions for that business day (COB jobs), but others are meant to create the

transactions for the next (incoming transactions): Business date concept is there to sort that out.

Business date concept is essential when:

• Having COB jobs:

◦ When the COB was triggered:

▪ All the jobs which processing the data must still accounted for actual business day

▪ All the incoming transactions must be accounted to the next business day

• Business day is ending before / after midnight (tenant date / system date)

• Testing purposes:

◦ Since the transactions and job execution is not tied anymore to a physical calendar, we can

easily test a whole loan lifecycle by altering the business date

• Handling disruption of service: For any unseen reason the system goes down or there are any

disruption in the workflow, the “missed days” can easily be processed one by one as nothing

happened

◦ There is a disruption at 2022-06-02

◦ The issue is fixed by 2022-06-05

◦ The COB flow can be executed for 2022-06-03 and when it is finished for 2022-06-04 and after

when the time arrives for 2022-06-05

This logical date is manageable via:

• Job

• API

To maintain such separation from physical calendar we need to introduce the following new dates:

• Business date

• COB date

◦ Can be calculated based on the actual business date

▪ Depend on COB date strategy (see below)

40

Business date

The - logical - date of the actual business day, eg: 2022-05-06

• It does not support time parts

• It can be managed manually (via API call) or automatically (via scheduled job)

• All business actions during the business day shall use this date:

◦ Posting / submitted on date of transactions

◦ Submitted on date of actions

◦ (Regular) jobs

• It will be used in every situation where the transaction date / value date is not provided by the user

or the user provided date shall be validated.

◦ Opening date

◦ Closing date

◦ Disbursal date

◦ Transaction/Value date

◦ Posting/Submitted date

◦ Reversal date

• Will not be use for audit purposes:

◦ Created on date

◦ Updated on date

COB date

The - logical - date of the business day for job execution, eg: 2022-05-05

• It can be calculated based on the business date

◦ COB date = business date - 1 day

◦ Automatically modified alongside with the business date change

• It does not support time parts

• It is automatically managed by business date change

◦ Configurable

• It is used only via COB job execution

◦ When we create / modify any business data during the COB job execution, the COB date is to be

used:

▪ Posting date of transactions

▪ Submitted on date of actions

41

▪ Transaction / value date of any actions

Some basic example

Apply for a loan

#1

Tenant date: 2022-05-23 14:22:12

Business date: 2022-05-22

Submitted on date: 2022-05-23

Outcome: FAIL

Message: The date on which a loan is submitted cannot be in the future.

Reason: Even the tenant date is 2022-05-23, but the business date was 2022-05-22 which means

anything further that date must be considered as a future date.

#2

Tenant date: 2022-05-23 14:22:12

Business date: 2022-05-22

Submitted on date: 2022-05-22

Outcome: SUCCESS

Loan application details:

• Submitted on date: 2022-05-22

Repayment for a loan

#1

Tenant date: 2022-05-25 11:22:12

Business date: 2022-05-24

Transaction date: 2022-05-25

Outcome: FAIL

Message: The transaction date cannot be in the future.

Reason: Even the physical date is 2022-05-25, but the business date was 2022-05-24 which means

42

anything further that date must be considered as a future date.

#2

Tenant date: 2022-05-25 11:22:12

Business date: 2022-05-24

Transaction date: 2022-05-23

Outcome: SUCCESS

Loan transaction details:

• Submitted on date: 2022-05-24

• Transaction date: 2022-05-23

• Created on date: 2022-05-25 11:22:12

Changes in Fineract

We shall modify at all the relevant places where the tenant date was used:

• With very limited exceptions all places where the tenant date is used we need to modify to use the

business date.

• Replace system date with tenant date or business date (exceptions may apply)

• Add missing Value dates and Posting dates to entities

• Having a generic naming conventions for JPA fields and DB fields

• Renaming the fields accordingly

• Evaluate value date (transaction date) and posting date (submitted on date), created on date usages

• Jobs to be checked and modified accordingly

• Native queries to be checked and modified accordingly

• Reports to be checked and modified accordingly

• Every table where update is supported the AbstractAuditableCustom should be implemented

• Amend Transactions and Journal entries date handling to fit for business date concept

• For audit fields we shall introduce timezoned datetimes and store them in database accordingly

◦ Storing DATETIME fields without Timezone is potential problem due to the daylight savings

◦ Also, some external libs (like Quartz) are using system timezone and Fineract will using Tenant

timezone for audit fields. To be able to distinct them in DB we shall use DATETIME with

TIMESTAMP column types and use timezoned java time objects in the application

43

Reliable event framework

Fineract is capable of generating and raising events for external consumers in a reliable way. This

section is going to describe all the details on that front with examples.

Framework capabilities

ACID (transactional) guarantee

The event framework must support ACID guarantees on the business operation level.

Let’s see a simple use-case:

1. A client applies to a loan on the UI

2. The loan is created on the server

3. A loan creation event is raised

What happens if step 3 fails? Shall it fail the original loan creation process?

What happens if step 2 fails but step 3 still gets executed? We’re raising an event for a loan that hasn’t

been created in reality.

Therefore, raising an event is tied to the original business transaction to ensure the data that’s getting

written into the database along with the respective events are saved in an all-or-nothing fashion.

Messaging integration

The system is able to send the raised events to downstream message channels. The current

implementation supports the following message channels:

• ActiveMQ

Ordering guarantee

The events that are raised will be sent to the downstream message channels in the same order as they

were raised.

Delivery guarantee

The framework supports the at-least-once delivery guarantee for the raised events.

Reliability and fault-tolerance

In terms of reliability and fault-tolerance, the event framework is able to handle the cases when the

downstream message channel is not able to accept events. As soon as the message channel is back to

operational, the events will be sent again.

44

Selective event producing

Whether or not an event must be sent to downstream message channels for a particular Fineract

instance is configurable through the UI and API.

Standardized format

All the events sent to downstream message channels are conforming a standardized format using Avro

schemas.

Extendability and customizations

The event framework is capable of being easily extended with new events for additional business

operations or customizing existing events.

Ability to send events in bulk

The event framework makes it possible to sort of queue events until they are ready to be sent and send

them as a single message instead of sending each event as a separate, individual one.

For example during the COB process, there might be events raised in separate business steps which

needs to be sent out but they only need to be sent out at the end of the COB execution process instead

of one-by-one.

Architecture

Intro

On a high-level, the concept looks the following. An event gets raised in a business operation. The event

data gets saved to the database - to ensure ACID guarantees. An asynchronous process takes the saved

events from the database and puts them onto a message channel.

The flow can be seen in the following diagram:

45

Foundational business events

The whole framework is built upon an existing infrastructure in Fineract; the Business Events.

As a quick recap, Business Events are Fineract events that can be raised at any place in a business

operation using the BusinessEventNotifierService. Callbacks can be registered when a certain type of

Business Event is raised and other business operations can be done. For example when a Loan gets

disbursed, there’s an interested party doing the Loan Arrears Aging recalculation using the Business

Event communication.

The nice thing about the Business Events is that they are tied to the original transaction which means if

any of the processing on the subscriber’s side fail, the entire original transaction will be rolled back.

This was one of the requirements for the Reliable event framework.

Event database integration

The database plays a crucial part in the framework since to ensure transactionality, - without doing

proper transaction synchronization between different message channels and the database - the

framework is going to save all the raised events into the same relational database that Fineract is

using.

Database structure

The database structure looks the following

46

Name Type Description Example

id number Auto incremented ID.

Not null.

1

type text The event type as a

string.

Not null.

LoanApprovedBusinessEve
nt

schema text The fully qualified name

of the schema that was

used for the data

serialization, as a string.

Not null.

org.apache.fineract.avr
o.loan.v1.LoanAccountDa
taV1

data BLOB

(MySQL/MariaDB),

BYTEA (PostgreSQL)

The event payload as

Avro binary.

Not null.

created_at timestamp UTC timestamp when

the event was raised.

Not null.

2022-09-06
14:20:10.148627 +00:00

status text Enum text representing

the status of the

external event.

Not null, indexed.

TO_BE_SENT, SENT

sent_at timestamp UTC timestamp when

the event was sent.

2022-09-06
14:30:10.148627 +00:00

idempotency_key text Randomly generated

UUID upon inserting a

row into the table for

idempotency purposes.

Not null.

68aed085-8235-4722-
b27d-b38674c19445

business_date date The business date to

when the event was

generated.

Not null, indexed.

2022-09-05

47

The above database table contains the unsent events which later on will be sent by an asynchronous

event processor.

Upon successfully sending an event, the corresponding statuses will be updated.

Avro schemas

For serializing events, Fineract is using Apache Avro. There are 2 reasons for that:

• More compact storage since Avro is a binary format

• The Avro schemas are published with Fineract as a separate JAR so event consumers can directly

map the events into POJOs

There are 3 different levels of Avro schemas used in Fineract for the Reliable event framework which

are described below.

Standard event schema

The standard event schema is for the regular events. These schemas are used when saving a raised

event into the database and using the Avro schema to serialize the event data into a binary format.

For example the OfficeDataV1 Avro schema looks the following:

48

OfficeDataV1.avsc

{

 "name": "OfficeDataV1",

 "namespace": "org.apache.fineract.avro.office.v1",

 "type": "record",

 "fields": [

 {

 "default": null,

 "name": "id",

 "type": [

 "null",

 "long"

]

 },

 {

 "default": null,

 "name": "name",

 "type": [

 "null",

 "string"

]

 },

 {

 "default": null,

 "name": "nameDecorated",

 "type": [

 "null",

 "string"

]

 },

 {

 "default": null,

 "name": "externalId",

 "type": [

 "null",

 "string"

]

 },

 {

 "default": null,

 "name": "openingDate",

 "type": [

 "null",

 "string"

]

 },

49

 {

 "default": null,

 "name": "hierarchy",

 "type": [

 "null",

 "string"

]

 },

 {

 "default": null,

 "name": "parentId",

 "type": [

 "null",

 "long"

]

 },

 {

 "default": null,

 "name": "parentName",

 "type": [

 "null",

 "string"

]

 },

 {

 "default": null,

 "name": "allowedParents",

 "type": [

 "null",

 {

 "type": "array",

 "items": "org.apache.fineract.avro.office.v1.OfficeDataV1"

 }

]

 }

]

}

Event message schema

The event message schema is just a wrapper around the standard event schema with extra metadata

for the event consumers.

Since Avro is strongly typed, the event content needs to be first serialized into a byte sequence and that

needs to be wrapped around.

50

This implies that for putting a single event message onto a message queue for external consumption,

data needs to be serialized 2 times; this is the 2-level serialization.

1. Serializing the event

2. Serializing the already serialized event into an event message using the message wrapper

The message schema looks the following:

MessageV1.avsc

{

 "name": "MessageV1",

 "namespace": "org.apache.fineract.avro",

 "type": "record",

 "fields": [

 {

 "name": "id",

 "doc": "The ID of the message to be sent",

 "type": "long"

 },

 {

 "name": "source",

 "doc": "A unique identifier of the source service",

 "type": "string"

 },

 {

 "name": "type",

 "doc": "The type of event the payload refers to. For example

LoanApprovedBusinessEvent",

 "type": "string"

 },

 {

 "name": "category",

 "doc": "The category of event the payload refers to. For example LOAN",

 "type": "string"

 },

 {

 "name": "createdAt",

 "doc": "The UTC time of when the event has been raised; in

ISO_LOCAL_DATE_TIME format. For example 2011-12-03T10:15:30",

 "type": "string"

 },

 {

 "name": "businessDate",

 "doc": "The business date when the event has been raised; in ISO_LOCAL_DATE

format. For example 2011-12-03",

 "type": "string"

51

 },

 {

 "name": "tenantId",

 "doc": "The tenantId that the event has been sent from. For example default",

 "type": "string"

 },

 {

 "name": "idempotencyKey",

 "doc": "The idempotency key for this particular event for consumer de-

duplication",

 "type": "string"

 },

 {

 "name": "dataschema",

 "doc": "The fully qualified name of the schema of the event payload. For

example org.apache.fineract.avro.loan.v1.LoanAccountDataV1",

 "type": "string"

 },

 {

 "name": "data",

 "doc": "The payload data serialized into Avro bytes",

 "type": "bytes"

 }

]

}

Bulk event schema

The bulk event schema is used when multiple events are supposed to be sent together. This schema is

used also when serializing the data for the database storing but the idea is quite simple. Have an array

of other event schemas embedded into it.

Since Avro is strongly typed, the array within the bulk event schema is an array of MessageV1 schemas.

That way the consumers can decide which events they want to deserialize and which don’t.

This elevates the regular 2-level serialization/deserialization concept up to a 3-level one:

1. Serializing the standard events

2. Serializing the standard events into a bulk event

3. Serializing the bulk event into an event message

Versioning

Avro is quite strict with changes to an existing schema and there are a number of compatibility modes

available.

Fineract keeps it simple though. Version numbers - in the package names and in the schema names -

52

are increased with each published modification; meaning that if the OfficeDataV1 schema needs a new

field and the OfficeDataV1 schema has been published officially with Fineract, a new OfficeDataV2 has

to be created with the new field instead of modifying the existing schema.

This pattern ensures that a certain event is always deserialized with the appropriate schema

definition, otherwise the deserialization could fail.

Code generation

The Avro schemas are described as JSON documents. That’s hardly usable directly with Java hence

Fineract generates Java POJOs from the Avro schemas. The good thing about these POJOs is the fact that

they can be serialized/deserialized in themselves without any magic since they have a toByteBuffer and

fromByteBuffer method.

From POJO to ByteBuffer:

LoanAccountDataV1 avroDto = ...

ByteBuffer buffer = avroDto.toByteBuffer();

From ByteBuffer to POJO:

ByteBuffer buffer = ...

LoanAccountDataV1 avroDto = LoanAccountDataV1.fromByteBuffer(buffer);


The ByteBuffer is a stateful container and needs to be handled carefully. Therefore

Fineract has a built-in ByteBuffer to byte array converter; ByteBufferConverter.

Downstream event consumption

When consuming events on the other side of the message channel, it’s critical to know which events

the system is interested in. With the multi-level serialization, it’s possible to deserialize only parts of

the message and decide based on that whether it makes sense for a particular system to deserialize the

event payload more.

Whether events are important can be decided based on:

• the type attribute in the message

• the category attribute in the message

• the dataschema attribute in the message

These are the main attributes in the message wrapper one can use to decide whether an event message

is useful.

If the event needs to be deserialized, the next step is to find the corresponding schema definition.

53

That’s going to be sent in the dataschema attribute within the message wrapper. Since the attribute

contains the fully-qualified name of the respective schema, it can be easily resolved to a Class object.

Based on that class, the payload data can be easily deserialized using the fromByteBuffer method on

every generated schema POJO.

Message ordering

One of the requirements for the framework is to provide ordering guarantees. All the events have to

conform a happens-before relation.

For the downstream consumers, this can be verified by the id attribute within the messages. Since it’s

going to be a strictly-monotonic numeric sequence, it can be used for ordering purposes.

Event categorization

For easier consumption, the terminology event category is introduced. This is nothing else but the

bounded context an event is related to.

For example the LoanApprovedBusinessEvent and the LoanWaiveInterestBusinessEvent are both

related to the Loan bounded contexts.

The category in which an event resides in is included in the message under the category attribute.

The existing event categories can be found under the Event categories section.

Asynchronous event processor

The events stored in the database will be picked up and sent by a regularly executed job.

This job is a Fineract job, scheduled to run for every minute and will pick a number of events in order.

Those events will be put onto the downstream message channel in the same order as they were raised.

Purging events

The events database table is going to grow continuously. That’s why Fineract has a purging

functionality in place that’s gonna delete old and already sent events.

It’s implemented as a Fineract job and is disabled by default. It’s called TBD.

Usage

Using the event framework is quite simple. First, it has to be enabled through properties or

environment variable.

The respective options are the following:

• the fineract.events.external.enabled property

54

• the FINERACT_EXTERNAL_EVENTS_ENABLED environment variable

These configurations accept a boolean value; true or false.

The key component to interact with is the BusinessEventNotifierService#notifyPostBusinessEvent

method.

Raising events

Raising events is really easy. An instance of a BusinessEvent interface is needed, that’s going to be the

event. There are plenty of them available already in the Fineract codebase.

And that’s pretty much it. Everything else is taken care of in terms of event data persisting and later on

putting it onto a message channel.

An example of event raising:

@Override

public CommandProcessingResult createClient(final JsonCommand command) {

 ...

 businessEventNotifierService.notifyPostBusinessEvent(new ClientCreateBusinessEvent

(newClient));

 ...

 return ...;

}

 The above code is copied from the ClientWritePlatformServiceJpaRepositoryImpl class.

Example event message content

Since the message is serialized into binary format, it’s hard to represent in the documentation

therefore here’s a JSON representation of the data, just as an example.

{

 "id": 121,

 "source": "a65d759d-04f9-4ddf-ac52-34fa5d1f5a25",

 "type": "LoanApprovedBusinessEvent",

 "category": "Loan",

 "createdAt": "2022-09-05T10:15:30",

 "tenantId": "default",

 "idempotencyKey": "abda146d-68b5-48ca-b527-16d2b7c5daef",

 "dataschema": "org.apache.fineract.avro.loan.v1.LoanAccountDataV1",

 "data": "..."

}

55


The source attribute refers to an ID that’s identifying the producer service. Fineract

will regenerate this ID upon each application startup.

Raising bulk events

Raising bulk events is really easy as well. The 2 key methods are:

• BusinessEventNotifierService#startExternalEventRecording

• BusinessEventNotifierService#stopExternalEventRecording

First, you have to start recording your events. This recording will be applied for the current thread.

And then you can raise as many events as you want with the regular

BusinessEventNotifierService#notifyPostBusinessEvent method, but they won’t get saved to the

database immediately. They’ll get "recorded" into an internal buffer.

When you stop recording using the method above, all the recorded events will be saved as a bulk event

to the database; and serialized appropriately.

From then on, the bulk event works just like any of the event. It’ll be picked up by the processor to send

it to a message channel.

Event categories

TBD

Selective event producing

TBD

Customizations

The framework provides a number of customization options:

• Creating new events (that’s already given by the Business Events)

• Creating new Avro schemas

• Customizing what data gets serialized for existing events

In the upcoming sections, that’s what going to be discussed.

Creating new events

Creating new events is super easy. Just create an implementation of the BusinessEvent interface and

that’s it.

From then on, you can raise those events in the system, although you can’t publish them to an external

message channel. If you have the event framework enabled, it’s going to fail with not finding the

56

appropriate serializer for your business event.


There are existing serializers which might be able to handle your new event. For

example the LoanBusinessEventSerializer is capable of handling all LoanBusinessEvent

subclasses so there’s no need to create a brand new serializer.

The interface looks the following:

BusinessEvent.java

public interface BusinessEvent<T> {

 T get();

 String getType();

 String getCategory();

 Long getAggregateRootId();

}

Quite simple. The get method should return the data you want to pass within the event instance. The

getType method returns the name of the business event that’s gonna be saved as the type into the

database.


Creating a new business event only means that it can be used for raising an event. To

make it compatible with the event framework and to be sent to a message channel,

some extra work is needed which are described below.

Creating new Avro schemas and serializers

First let’s talk about the event serializers because that’s what’s needed to make a new event compatible

with the framework.

The serializer has a special interface, BusinessEventSerializer.

57

BusinessEventSerializer.java

public interface BusinessEventSerializer {

 <T> boolean canSerialize(BusinessEvent<T> event);

 Class<? extends GenericContainer> getSupportedSchema();

 <T> ByteBufferSerializable toAvroDTO(BusinessEvent<T> rawEvent);

}

An implementation of this interface shall be registered as a Spring bean, and it’ll be picked up

automatically by the framework.

 You can look at the existing serializers for implementation ideas.

New Avro schemas can be easily created. Just create a new Avro schema file in the fineract-avro-

schemas project under the respective bounded context folder, and it will be picked up automatically by

the code generator.

BigDecimal support in Avro schemas

Apache Avro by default doesn’t support complex types like a BigDecimal. It has to be implemented

using a custom snippet like this:

{

 "logicalType": "decimal",

 "precision": 27,

 "scale": 8,

 "type": "bytes"

}

It’s a 20 precision and 8 scale BigDecimal.

Obviously it’s quite challenging to copy-paste this snippet to every single BigDecimal field, so there’s a

customization in place for Fineract.

The type bigdecimal is supported natively, and you’re free to use it like this:

58

{

 "default": null,

 "name": "principal",

 "type": [

 "null",

 "bigdecimal"

]

}


This bigdecimal type will be simple replaced with the BigDecimal snippet showed

above during the compilation process.

Custom data serialization for existing events

In case there’s a need some extra bit of information within the event message that the default

serializers are not providing, you can override this behavior by registering a brand-new custom

serializer (as shown above).

Since there’s a priority order of serializers, the only thing the custom serializer need to do is to be

annotated by the @Order annotation or to implement the Ordered interface.

An example custom serializer with priority looks the following:

59

@Component

@RequiredArgsConstructor

@Order(Ordered.HIGHEST_PRECEDENCE)

public class CustomLoanBusinessEventSerializer implements BusinessEventSerializer {

 ...

 @Override

 public <T> boolean canSerialize(BusinessEvent<T> event) {

 return ...;

 }

 @Override

 public <T> byte[] serialize(BusinessEvent<T> rawEvent) throws IOException {

 ...

 ByteBuffer buffer = avroDto.toByteBuffer();

 return byteBufferConverter.convert(buffer);

 }

 @Override

 public Class<? extends GenericContainer> getSupportedSchema() {

 return ...;

 }

}

 All the default serializers are having Ordered.LOWEST_PRECEDENCE.

Appendix A: Properties and environment variables

Property name Environment variable Default value Description

fineract.events.externa
l.enabled

FINERACT_EXTERNAL_EVENT
S_ENABLED

false Whether the external

event sending is enabled

or disabled.

Introducing Advanced payment allocation

Since the first repayment strategy got introduced, many followed, but there was one thing common in

them:

• They were hard coding the allocation rules for each transaction type.

By introducing the "Advanced payment allocation" the idea was to have a repayment strategy which

was:

• supporting dynamic configuration of the allocation rules for transaction types

60

• supporting configuration of more fine-grained allocation rules for future installments

• supporting reprocessing of transactions and charges in chronological order

Glossary

*Advanced payment allocation Ability to configure allocation rules dynamically

for transactions

*Payment allocation Rule that defines which outstanding balance to be

paid of first on which installment

*Re-amortization Transaction amount to be divided into equal

portions by the number of future installments and

those installments to be paid by these portions.

Capabilities

• Payment allocation should be configurable for transactions:

◦ Repayment

◦ Goodwill credit

◦ Payout refund

◦ Merchant refund

◦ Charge adjustments

◦ etc.

• Can be configured for Loan products

◦ Payment allocation rule changes on the loan product will affect only the newly created Loan

accounts.

• Chronological reprocess order

◦ Transactions (including disbursements) and charges are (re)processed and allocated in

chronological order

• Support re-amortization between future installments

◦ Transaction amount to be divided into equal portions (based on the number of future

installments) and to repay each future installment by the calculated portion.

▪ It’s not hard coded, but usually the principal portion needs to be allocated first, but if there

are still unprocessed amounts, the rest of the outstanding balances are to be allocated based

on the rest of the rules

• Main allocation rules (installment level)

◦ Past Due Installment(s):

▪ Oldest first

61

◦ Due Installment(s):

▪ Normal installment takes priority over Down-payment installment (if applicable)

◦ Future Installment(s):

▪ Available allocation orders:

▪ Next installment first

▪ Last installment first

▪ Re-amortization*

• Secondary allocation rules

◦ Penalty

◦ Fee

◦ Interest

◦ Principal

Configuration

Advanced repayment allocation rules can be configured for the Loan product if "Advanced payment

allocation" got selected as repayment strategy.

There will be a (always required) “DEFAULT” transaction type configuration which acts as fallback

ruleset, if the there are no configured rules for a specific transaction type.

New repayment strategy

• Name: Advanced payment allocation

• Code: advanced-payment-allocation-strategy

• Order: 8

Allocation rules

• Past due penalty

• Past due fee

• Past due principal

• Past due interest

• Due penalty

• Due fee

• Due principal

• Due interest

62

• In advance penalty

• In advance fee

• In advance principal

• In advance interest

Future installment allocation rules:

• Next installment

• Last installment

• Re-amortization

Example Request

{

 ...

 "paymentAllocation": [

 {

 "transactionType": "DEFAULT",

 "paymentAllocationOrder": [

 {

 "paymentAllocationRule": "DUE_PAST_PENALTY",

 "order": 1

 },

 {

 "paymentAllocationRule": "DUE_PAST_FEE",

 "order": 2

 },

 {

 "paymentAllocationRule": "DUE_PAST_INTEREST",

 "order": 3

 },

 ...

 {

 "paymentAllocationRule": "IN_ADVANCE_INTEREST",

 "order": 14

 }

],

 "futureInstallmentAllocationRule": "NEXT_INSTALLMENT"

 }

],

 ...

}

The above request configures the "DEFAULT" allocation rules:

63

• First the already due penalties to be paid

• Second the already due fees to be paid

• Last the future interests to be paid

Also for future installments set the allocation rules as

• First future installment by due date to be paid first

High level design

Flow of advanced payment allocation processing

64

65

Fineract Development Environment

TBD

Git

TBD

GPG

TBD

Committers

Please make sure to provide your GPG fingerprint in your Apache committer profile at id.apache.org.

Docker

TBD

Docker Compose

TBD

Podman

TBD

Rancher Docker Desktop

TBD

Gradle

TBD

IDE

TBD

IntelliJ

TBD

66

https://id.apache.org

Eclipse

TBD

VSCode

TBD

Kubernetes

TBD

Minikube

TBD

Microk8s

TBD

K3d

TBD

Helm Charts

TBD

Tools

TBD

SDKMAN

We recommend using SKDMAN to manage the following developer tools:

• JDK

• Spring Boot CLI

• Gradle (if you need a global installation)

• AsciidoctorJ

TBD

67

Brew

MacOS

TBD

Linux

TBD

68

Custom Modules

 Currently, modules are a proof of concept feature in Fineract.

Introduction

Creating customizations for Fineract services is easy. The method described here will work both with

our future module guidelines (aka "clean room" modules) and with the intermediary solution we will

put in place to avoid major refactorings.

The folder structure for modules is based on a convention that ensures that your extensions don’t

clash with Fineract’s internals. This is to make sure that your downstream forks of Fineract are easy to

sync. In the past we had all kinds of strategies to add custom code - including editing existing sources

in fineract-provider. This is not recommended.


At the moment the only service(s) we prepared to be overridden/replaced are

org.apache.fineract.portfolio.note.service.NoteReadPlatformService and

org.apache.fineract.portfolio.note.service.NoteWritePlatformService. Please reach

out on the developer mailing list if you need other services.

The recommended folder structure is very simple. If you follow this recommendation you’ll get some

additional benefits, e. g. you don’t even have to edit settings.gradle to include your new custom

modules. Your modules will also be automatically included in a custom Fineract Docker image build

that you can use for your production deployments.

Let’s assume your company/org is called "ACME Inc." and you are trying to (fully/partially) replace an

existing Fineract service, let’s say those in org.apache.fineract.portfolio.note. The recommended

folder structure would then look something like this:

69

custom
acme

note
core

src
main

java
com.acme.f ineract.note.core

data
MyData.java

service
MyCustomService.java

build.gradle
dependencies.gradle

service
src

main
java

com.acme.fineract.note.service
AcmeNoteReadService.java
AcmeNoteWriteService.java

build.gradle
dependencies.gradle

star ter
src

main
java

com.acme.f ineract.note.star ter
AcmeNoteAutoConfiguration.java

resources
META-INF

spr ing/org.spr ingframework.boot.autoconfigure.AutoConfiguration.impor ts
build.gradle
dependencies.gradle

As soon as we can publish Fineract module JARs to Maven Central you’ll have more freedom to setup

your projects (including to setup separate Git repos). But for now please follow these instructions:

1. Create a folder under custom and name it according to your company/organisation (e. g. acme if your

company is ACME Inc.); this way your custom modules can’t clash even with other companies'

modules

2. Under your company folder create a folder for the category or domain your module is targeting; e. g.

"loan", "client", "account" etc.

3. Finally, setup library folders for the actual modules you want to create; usually that will be to

replace/extend some existing service, so there could be a service folder, maybe even a core folder,

e. g. if you want to add additional DTOs etc.; we have also an example for COB business steps

4. Per category/domain you should have a starter library; means: a Spring Boot auto-configuration

setup that makes including your module in Fineract easier ("hands-free"); the necessary parts for a

auto-configuration library are a Spring Java configuration class (annotated with @Configuration)

and a text file at META-

INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports in your starter

resource folder:

com.acme.fineract.portfolio.note.starter.AcmeNoteAutoConfiguration

70

Please make sure that your module libraries have proper build.gradle files:

description = 'ACME Fineract Note Service'

group = 'com.acme.fineract'

base {

 archivesName = 'acme-fineract-note-service'

}

apply from: 'dependencies.gradle'


You don’t need to edit settings.gradle to add your modules/libraries. If you follow

above convention they’ll get included automatically.

5. The dependency.gradle file could look something like this:

dependencies {

 implementation(project(':fineract-core'))

 implementation(project(':fineract-provider'))

 compileOnly('org.springframework.boot:spring-boot-autoconfigure')

}


We’ve included by default some basic and useful dependencies for all custom

modules, like Slf4j, Lombok, the usual testing frameworks (JUnit, Cucumber, Mockito

etc.)


Do not include your custom module in `fineract-provider’s dependency.gradle file.

This creates a circular dependency and will fail your build.

Custom Services


We are still trying to figure out which internal services make most sense to be

pluggable. Please join the discussion and let us know if you have a specific

requirement.

Note Service

The Note service is responsible for … TBD

71


We chose the note service because it’s interface is very simple and has not many cross

dependencies.

Interfaces

Note Read Service Interface

package org.apache.fineract.portfolio.note.service;

import java.util.Collection;

import org.apache.fineract.portfolio.note.data.NoteData;

public interface NoteReadPlatformService {

 NoteData retrieveNote(Long noteId, Long resourceId, Integer noteTypeId);

 Collection<NoteData> retrieveNotesByResource(Long resourceId, Integer noteTypeId);

}

Note Write Service Interface

package org.apache.fineract.portfolio.note.service;

import java.util.Collection;

import org.apache.fineract.portfolio.note.data.NoteData;

public interface NoteReadPlatformService {

 NoteData retrieveNote(Long noteId, Long resourceId, Integer noteTypeId);

 Collection<NoteData> retrieveNotesByResource(Long resourceId, Integer noteTypeId);

}

Auto Start Configuration

The rules to replace the Note services are very simple. If you provide an alternative implementation of

the services then the default implementations will not be loaded.

72

Note Auto Starter Configuration

package org.apache.fineract.portfolio.note.starter;

import org.apache.fineract.portfolio.client.domain.ClientRepositoryWrapper;

import org.apache.fineract.portfolio.group.domain.GroupRepository;

import org.apache.fineract.portfolio.loanaccount.domain.LoanRepositoryWrapper;

import org.apache.fineract.portfolio.loanaccount.domain.LoanTransactionRepository;

import org.apache.fineract.portfolio.note.domain.NoteRepository;

import

org.apache.fineract.portfolio.note.serialization.NoteCommandFromApiJsonDeserializer;

import org.apache.fineract.portfolio.note.service.NoteReadPlatformService;

import org.apache.fineract.portfolio.note.service.NoteReadPlatformServiceImpl;

import org.apache.fineract.portfolio.note.service.NoteWritePlatformService;

import

org.apache.fineract.portfolio.note.service.NoteWritePlatformServiceJpaRepositoryImpl;

import org.apache.fineract.portfolio.savings.domain.SavingsAccountRepository;

import org.springframework.boot.autoconfigure.condition.ConditionalOnMissingBean;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.jdbc.core.JdbcTemplate;

@Configuration

public class NoteAutoConfiguration {

 @Bean

 @ConditionalOnMissingBean

 public NoteReadPlatformService noteReadPlatformService(JdbcTemplate jdbcTemplate) {

 return new NoteReadPlatformServiceImpl(jdbcTemplate);

 }

 @Bean

 @ConditionalOnMissingBean

 public NoteWritePlatformService noteWritePlatformService(NoteRepository

noteRepository, ClientRepositoryWrapper clientRepository,

 GroupRepository groupRepository, LoanRepositoryWrapper loanRepository,

LoanTransactionRepository loanTransactionRepository,

 NoteCommandFromApiJsonDeserializer fromApiJsonDeserializer,

SavingsAccountRepository savingsAccountRepository) {

 return new NoteWritePlatformServiceJpaRepositoryImpl(noteRepository,

clientRepository, groupRepository, loanRepository,

 loanTransactionRepository, fromApiJsonDeserializer,

savingsAccountRepository);

 }

}

73

Custom Business Steps

It is very easy to add your own business steps to Fineract’s default steps:

1. Create a custom module (e. g. custom/acme/steps, follow the instructions on how to create a custom

module)

2. Create a class that implements interface org.apache.fineract.cob.COBBusinessStep

3. Provide the custom database migration to add the necessary information about your business step

in table m_batch_business_steps

Business Step Interface

package org.apache.fineract.cob;

import org.apache.fineract.infrastructure.core.domain.AbstractPersistableCustom;

public interface COBBusinessStep<T extends AbstractPersistableCustom<Long>> {

 T execute(T input);

 String getEnumStyledName();

 String getHumanReadableName();

}

Business Step Implementation

74

Custom Business Step Implementation Example

package com.acme.fineract.loan.cob;

import lombok.RequiredArgsConstructor;

import lombok.extern.slf4j.Slf4j;

import org.apache.fineract.cob.loan.LoanCOBBusinessStep;

import org.apache.fineract.portfolio.loanaccount.domain.Loan;

import org.apache.fineract.portfolio.loanaccount.domain.LoanAccountDomainService;

import org.springframework.beans.factory.InitializingBean;

import org.springframework.stereotype.Component;

@Slf4j

@Component

@RequiredArgsConstructor

public class AcmeNoopBusinessStep implements LoanCOBBusinessStep, InitializingBean {

 private static final String ENUM_STYLED_NAME = "ACME_LOAN_NOOP";

 private static final String HUMAN_READABLE_NAME = "ACME Loan Noop";

 // NOTE: just to demonstrate that dependency injection is working

 private final LoanAccountDomainService loanAccountDomainService;

 @Override

 public void afterPropertiesSet() throws Exception {

 log.warn("Acme COB Loan: '{}'", getClass().getCanonicalName());

 }

 @Override

 public Loan execute(Loan input) {

 return input;

 }

 @Override

 public String getEnumStyledName() {

 return ENUM_STYLED_NAME;

 }

 @Override

 public String getHumanReadableName() {

 return HUMAN_READABLE_NAME;

 }

}

As you can see this implementation is very simple and doesn’t do much. There are some simple

conventions though that you should follow implementing your own business steps:

75

1. Make sure the value returned by method getEnumStyledName() is unique; it’s a good idea to choose a

prefix that reflects the name of your organization (in this example ACME_)

2. You have more freedom for the value returned by getHumanReadableName(), but it’s a good idea to

keep this value as unique as possible

Business Step Database Migration

Business Step Database Migration Example

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">

 <changeSet author="acme" id="1">

 <insert tableName="m_batch_business_steps">

 <column name="job_name" value="LOAN_CLOSE_OF_BUSINESS"/>

 <column name="step_name" value="ACME_LOAN_NOOP"/>

 <column name="step_order" value="5"/>

 </insert>

 </changeSet>

</databaseChangeLog>

 See also chapter about batch jobs in this documentation.

Custom Loan Transaction Processors

Fineract has 7 built-in loan transaction processors:

1. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.CreocoreLoanRepayme
ntScheduleTransactionProcessor

2. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.EarlyPaymentLoanRep
aymentScheduleTransactionProcessor

3. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.FineractStyleLoanRe
paymentScheduleTransactionProcessor

4. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.HeavensFamilyLoanRe
paymentScheduleTransactionProcessor

5. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.InterestPrincipalPe
naltyFeesOrderLoanRepaymentScheduleTransactionProcessor

6. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.PrincipalInterestPe
naltyFeesOrderLoanRepaymentScheduleTransactionProcessor

7. org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.RBILoanRepaymentSch
eduleTransactionProcessor

Default Loan Transaction Processor configuration

76

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Conditional;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.annotation.Lazy;

@Configuration

public class LoanAccountAutoStarter {

 @Bean

 @Conditional(CreocoreLoanRepaymentScheduleTransactionProcessorCondition.class)

 public CreocoreLoanRepaymentScheduleTransactionProcessor

creocoreLoanRepaymentScheduleTransactionProcessor() {

 return new CreocoreLoanRepaymentScheduleTransactionProcessor();

 }

 @Bean

 @Conditional(EarlyRepaymentLoanRepaymentScheduleTransactionProcessorCondition.class)

 public EarlyPaymentLoanRepaymentScheduleTransactionProcessor

earlyPaymentLoanRepaymentScheduleTransactionProcessor() {

 return new EarlyPaymentLoanRepaymentScheduleTransactionProcessor();

 }

 @Bean

 @Conditional(MifosStandardLoanRepaymentScheduleTransactionProcessorCondition.class)

 public FineractStyleLoanRepaymentScheduleTransactionProcessor

fineractStyleLoanRepaymentScheduleTransactionProcessor() {

 return new FineractStyleLoanRepaymentScheduleTransactionProcessor();

 }

 @Bean

 @Conditional(HeavensFamilyLoanRepaymentScheduleTransactionProcessorCondition.class)

 public HeavensFamilyLoanRepaymentScheduleTransactionProcessor

heavensFamilyLoanRepaymentScheduleTransactionProcessor() {

 return new HeavensFamilyLoanRepaymentScheduleTransactionProcessor();

 }

 @Bean

 @Conditional

(InterestPrincipalPenaltiesFeesLoanRepaymentScheduleTransactionProcessorCondition.class)

 public InterestPrincipalPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor

interestPrincipalPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor() {

 return new

InterestPrincipalPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor();

 }

 @Bean

 @Conditional

(PrincipalInterestPenaltiesFeesLoanRepaymentScheduleTransactionProcessorCondition.class)

77

 public PrincipalInterestPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor

principalInterestPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor() {

 return new

PrincipalInterestPenaltyFeesOrderLoanRepaymentScheduleTransactionProcessor();

 }

All default processor implementations are enabled by default, but can also be prevented from being

loaded into memory by a simple configuration in application.properties. Use the environment

variables you see below in your Kubernetes and Docker Compose deployments to override the default

behavior.

Default Loan Transaction Processor Application Properties

fineract.partitioned-job.partitioned-job-properties[0].job-name=LOAN_COB

fineract.partitioned-job.partitioned-job-properties[0].chunk-

size=${LOAN_COB_CHUNK_SIZE:100}

fineract.partitioned-job.partitioned-job-properties[0].partition-

size=${LOAN_COB_PARTITION_SIZE:100}

fineract.partitioned-job.partitioned-job-properties[0].thread-pool-core-pool-

size=${LOAN_COB_THREAD_POOL_CORE_POOL_SIZE:5}

fineract.partitioned-job.partitioned-job-properties[0].thread-pool-max-pool-

size=${LOAN_COB_THREAD_POOL_MAX_POOL_SIZE:5}

fineract.partitioned-job.partitioned-job-properties[0].thread-pool-queue-

capacity=${LOAN_COB_THREAD_POOL_QUEUE_CAPACITY:20}

Implement Processors

Loan Transaction Processor Interface

package org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor;

import java.time.LocalDate;

import java.util.List;

import java.util.Set;

import org.apache.fineract.organisation.monetary.domain.MonetaryCurrency;

import org.apache.fineract.organisation.monetary.domain.Money;

import org.apache.fineract.portfolio.loanaccount.domain.ChangedTransactionDetail;

import org.apache.fineract.portfolio.loanaccount.domain.LoanCharge;

import org.apache.fineract.portfolio.loanaccount.domain.LoanRepaymentScheduleInstallment;

import org.apache.fineract.portfolio.loanaccount.domain.LoanTransaction;

public interface LoanRepaymentScheduleTransactionProcessor {

 String getCode();

 String getName();

78

 boolean accept(String s);

 /**

 * Provides support for processing the latest transaction (which should be the latest

transaction) against the loan

 * schedule.

 */

 void processLatestTransaction(LoanTransaction loanTransaction, TransactionCtx ctx);

 /**

 * Provides support for passing all {@link LoanTransaction}'s so it will completely

re-process the entire loan

 * schedule. This is required in cases where the {@link LoanTransaction} being

processed is in the past and falls

 * before existing transactions or and adjustment is made to an existing in which

case the entire loan schedule

 * needs to be re-processed.

 */

 ChangedTransactionDetail reprocessLoanTransactions(LocalDate disbursementDate, List

<LoanTransaction> repaymentsOrWaivers,

 MonetaryCurrency currency, List<LoanRepaymentScheduleInstallment>

repaymentScheduleInstallments, Set<LoanCharge> charges);

 Money handleRepaymentSchedule(List<LoanTransaction> transactionsPostDisbursement,

MonetaryCurrency currency,

 List<LoanRepaymentScheduleInstallment> installments, Set<LoanCharge>

loanCharges);

 /**

 * Used in interest recalculation to introduce new interest only installment.

 */

 boolean isInterestFirstRepaymentScheduleTransactionProcessor();

}

79

Custom Loan Transaction Processor Example

package com.acme.fineract.loan.processor;

import

org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.FineractStyleL

oanRepaymentScheduleTransactionProcessor;

import org.springframework.stereotype.Component;

@Component

public class AcmeLoanRepaymentScheduleTransactionProcessor extends

FineractStyleLoanRepaymentScheduleTransactionProcessor {

 public static final String STRATEGY_CODE = "acme-standard-strategy";

 public static final String STRATEGY_NAME = "ACME Corp.: standard loan transaction

processing strategy";

 @Override

 public String getCode() {

 return STRATEGY_CODE;

 }

 @Override

 public String getName() {

 return STRATEGY_NAME;

 }

}

The example implementation doesn’t do much. We are just overriding one of the default processor

implementations
org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.impl.FineractStyleLoanRepaym

entScheduleTransactionProcessor and give the custom processor it’s own lookup code and name

(descriptive text for display in UIs, e. g. when configuring a loan product). As usual it is a good idea to

follow some simple conventions:

1. Make sure the value returned by getCode() is unique. Prefixing it with characters that reflect your

organization name (here acme-) is a good idea.

2. You have more freedom for the descriptive test returned by getName(), but it is still a good idea to

keep the value unique to avoid confusion.

Method getCode()

Lookup value that is used to pick a loan transaction processor (see processor factory).

80

Method getName()

Descriptive text about the loan transaction processor that is mostly used in user interfaces.

Method handleTransaction()

TBD

Method handleWriteOff()

TBD

Method handleRepaymentSchedule()

TBD

Method isInterestFirstRepaymentScheduleTransactionProcessor()

TBD

Method handleRefund()

TBD

Method handleChargeback()

TBD

Method processTransactionsFromDerivedFields()

TBD

Override Processor Factory

The processor factory has no reference to any specific implementation of the loan transaction

processor interface. All available implementations will be injected here (internal default and custom

implementations). Processor instances can be looked up via method determineProcessor(). You can pass

either the code of the processor or the processor’s name to look it up. If a matching processor can’t be

found then the factory function will either return the default instance or fails with an exception

depending on the configuration in application.properties.


It is preferable to use the processor code to lookup processor instances. Lookups via

processor names are only done in the import service via Excel sheets (should be

fixed).

81

Loan Transaction Processor Factory Implementation

package org.apache.fineract.portfolio.loanaccount.domain;

import java.util.List;

import java.util.Optional;

import lombok.RequiredArgsConstructor;

import

org.apache.fineract.portfolio.loanaccount.domain.transactionprocessor.LoanRepaymentSchedu

leTransactionProcessor;

import

org.apache.fineract.portfolio.loanaccount.exception.LoanTransactionProcessingStrategyNotF

oundException;

import org.apache.fineract.portfolio.loanproduct.data.TransactionProcessingStrategyData;

import org.springframework.beans.factory.annotation.Value;

@RequiredArgsConstructor

public class LoanRepaymentScheduleTransactionProcessorFactory {

 private final LoanRepaymentScheduleTransactionProcessor

defaultLoanRepaymentScheduleTransactionProcessor;

 private final List<LoanRepaymentScheduleTransactionProcessor> processors;

 @Value("${fineract.loan.transactionprocessor.error-not-found-fail}")

 private Boolean errorNotFoundFail;

 public LoanRepaymentScheduleTransactionProcessor determineProcessor(final String

transactionProcessingStrategy) {

 Optional<LoanRepaymentScheduleTransactionProcessor> processor = processors.

stream()

 .filter(p -> p.accept(transactionProcessingStrategy)).findFirst();

 if (processor.isEmpty() && Boolean.TRUE.equals(errorNotFoundFail)) {

 throw new LoanTransactionProcessingStrategyNotFoundException

(transactionProcessingStrategy);

 } else {

 return processor.orElse(defaultLoanRepaymentScheduleTransactionProcessor);

 }

 }

 public List<TransactionProcessingStrategyData> getStrategies() {

 return processors.stream().map(p -> new TransactionProcessingStrategyData(null,

p.getCode(), p.getName())).toList();

 }

}

82

This is the default factory auto-configuration.

Loan Transaction Processor Factory Auto-Configuration

 @Bean

 @Conditional(RBIIndiaLoanRepaymentScheduleTransactionProcessorCondition.class)

 public RBILoanRepaymentScheduleTransactionProcessor

rbiLoanRepaymentScheduleTransactionProcessor() {

 return new RBILoanRepaymentScheduleTransactionProcessor();

 }

If you need then you can override this, e.g. because you want to set a different default processor then

you can do so in your custom module’s auto-configuration.

Custom Loan Transaction Processor Factory Auto-Configuration Example

 @Bean

 public LoanRepaymentScheduleTransactionProcessorFactory

loanRepaymentScheduleTransactionProcessorFactory(

 AcmeLoanRepaymentScheduleTransactionProcessor

defaultLoanRepaymentScheduleTransactionProcessor,

 List<LoanRepaymentScheduleTransactionProcessor> processors) {

 return new LoanRepaymentScheduleTransactionProcessorFactory

(defaultLoanRepaymentScheduleTransactionProcessor, processors);

Processor Lookup Failure Configuration Property

fineract.partitioned-job.partitioned-job-properties[0].retry-

limit=${LOAN_COB_RETRY_LIMIT:5}

Custom Batch Jobs

Fineract provides extension points to define custom batch jobs using module system. Using this

approach custom batch jobs can be defined and configured along with Fineract’s default batch jobs to

extend or customize batch processing.

The batch jobs in Fineract are implemented using Spring Batch. In addition to the Spring Batch

ecosystem, automatic scheduling is done by Quartz Scheduler but it’s also possible to trigger batch jobs

via regular APIs.

For defining custom job:

1. Create custom module (e. g. custom/acme/loan/job), follow the instructions on how to create a

custom module.

2. Create job configuration to register job, job steps, tasklet with job builder factory. (e. g.

83

https://docs.spring.io/spring-batch/docs/current/reference/html/
http://www.quartz-scheduler.org/

com.acme.fineract.loan.job.AcmeNoopJobConfiguration)

3. Create tasklet for job execution functionality. (e.g. com.acme.fineract.loan.job.AcmeNoopJobTasklet)

4. Provide the custom database migration to add necessary information about your job in table job.

(e.g. custom/acme/loan/job/src/main/resources/db/custom-changelog/0001_acme_loan_job.xml)

5. New job name should be registered along with default jobs so that it can be scheduled at startup.

For registering job name with Fineract job scheduler, create an enum with job name details (e.g.

com.acme.fineract.loan.job.AcmeJobName) and a job name provider configuration which is accessed

by Fineract job scheduler at startup to retrieve job name (e.g.

com.acme.fineract.loan.job.AcmeJobNameConfig).

Job Configuration

84

Job Configuration Example

package com.acme.fineract.loan.job;

import lombok.RequiredArgsConstructor;

import org.springframework.batch.core.Job;

import org.springframework.batch.core.Step;

import org.springframework.batch.core.job.builder.JobBuilder;

import org.springframework.batch.core.launch.support.RunIdIncrementer;

import org.springframework.batch.core.repository.JobRepository;

import org.springframework.batch.core.step.builder.StepBuilder;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.transaction.PlatformTransactionManager;

@Configuration

@RequiredArgsConstructor

public class AcmeNoopJobConfiguration {

 private final JobRepository jobRepository;

 private final PlatformTransactionManager transactionManager;

 private final AcmeNoopJobTasklet tasklet;

 @Bean

 protected Step acmeNoopJobStep() {

 return new StepBuilder(AcmeJobName.ACME_NOOP_JOB.name(), jobRepository).tasklet

(tasklet, transactionManager).build();

 }

 @Bean

 public Job acmeNoopJob() {

 return new JobBuilder(AcmeJobName.ACME_NOOP_JOB.name(), jobRepository).start

(acmeNoopJobStep()).incrementer(new RunIdIncrementer())

 .build();

 }

}

Tasklet Definition

85

Job Tasklet Example

package com.acme.fineract.loan.job;

import lombok.extern.slf4j.Slf4j;

import org.springframework.batch.core.StepContribution;

import org.springframework.batch.core.scope.context.ChunkContext;

import org.springframework.batch.core.step.tasklet.Tasklet;

import org.springframework.batch.repeat.RepeatStatus;

import org.springframework.stereotype.Component;

@Slf4j

@Component

public class AcmeNoopJobTasklet implements Tasklet {

 @Override

 public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext)

throws Exception {

 log.info("Acme custom job execution");

 return RepeatStatus.FINISHED;

 }

}

Database Migration Script for Job

86

Database Migration Script Example

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">

 <changeSet author="acme" id="1">

 <insert tableName="job">

 <column name="name" value="Acme Noop Job"/>

 <column name="display_name" value="Acme Noop Job"/>

 <column name="cron_expression" value="0 1 0 1/1 * ? *"/>

 <column name="create_time" valueDate="${current_datetime}"/>

 <column name="task_priority" valueNumeric="5"/>

 <column name="group_name"/>

 <column name="previous_run_start_time"/>

 <column name="job_key" value="Acme Noop Job _ DEFAULT"/>

 <column name="initializing_errorlog"/>

 <column name="is_active" valueBoolean="false"/>

 <column name="currently_running" valueBoolean="false"/>

 <column name="updates_allowed" valueBoolean="true"/>

 <column name="scheduler_group" valueNumeric="0"/>

 <column name="is_misfired" valueBoolean="false"/>

 <column name="node_id" valueNumeric="1"/>

 <column name="is_mismatched_job" valueBoolean="true"/>

 </insert>

 </changeSet>

 <changeSet author="acme" id="2">

 <update tableName="job">

 <column name="short_name" value="ACM_NOOP"/>

 <where>name='Acme Noop Job'</where>

 </update>

 </changeSet>

</databaseChangeLog>

Job Name Configuration

87

Job Name Enum Example

package com.acme.fineract.loan.job;

public enum AcmeJobName {

 ACME_NOOP_JOB("Acme Noop Job");

 private final String name;

 AcmeJobName(final String name) {

 this.name = name;

 }

 @Override

 public String toString() {

 return this.name;

 }

}

Job Name Provider Configuration Example

package com.acme.fineract.loan.job;

import java.util.List;

import org.apache.fineract.infrastructure.jobs.service.jobname.JobNameData;

import org.apache.fineract.infrastructure.jobs.service.jobname.JobNameProvider;

import org.apache.fineract.infrastructure.jobs.service.jobname.SimpleJobNameProvider;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class AcmeJobNameConfig {

 @Bean

 public JobNameProvider acmeJobNameProvider() {

 return new SimpleJobNameProvider(List.of(new JobNameData(AcmeJobName

.ACME_NOOP_JOB.name(), AcmeJobName.ACME_NOOP_JOB.toString())));

 }

}

Gradle Build Files

Please make sure that your module libraries have proper build.gradle and dependencies.gradle files:

88

Example (build.gradle)

description = 'ACME Fineract Loan Job'

group = 'com.acme.fineract'

base {

 archivesName = 'acme-fineract-loan-job'

}

apply from: 'dependencies.gradle'

Example (dependencies.gradle)

dependencies {

 implementation(project(':fineract-core'))

 implementation(project(':fineract-loan'))

 implementation(project(':fineract-provider'))

 implementation('org.springframework.batch:spring-batch-integration')

 implementation('org.springframework.boot:spring-boot-starter-data-jpa')

}

Deployment

Custom modules can be deployed using docker image. See chapter about deploying custom modules in

this documentation.

Example command to build docker image

./gradlew :custom:docker:jibDockerBuild

 See also chapter about batch jobs in this documentation.

Custom Database Migration

If database migrations are needed as part of your customizations then you can add your own

migration scripts. This is again based on conventions:

1. Create folders db/custom-changelog in one of your resources folders; we recommend using the

resources folder in your starter library, but actually any of your custom libs will do.

2. Under db/custom-changelog create an XML changelog file, e. g. changelog-acme-note.xml; you are free

to choose a name for this file, but we recommend being consistent to avoid classpath conflicts.

3. Under db/custom-changelog create a folder parts for your specific changelogs

89

custom
acme

note
star ter

src
main

java
com.acme.f ineract.note.star ter

AcmeNoteAutoConfiguration.java
resources

db
custom-changelog

par ts
0001_acme_note_initial.xml

changelog-acme-note.xml
META-INF

spr ing/org.spr ingframework.boot.autoconfigure.AutoConfiguration.impor ts
build.gradle
dependencies.gradle

And here an example migration script:

<databaseChangeLog xmlns="http://www.liquibase.org/xml/ns/dbchangelog"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog

http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-4.1.xsd">

 <changeSet author="acme" id="1">

 <createTable tableName="acme_note_dummy">

 <column autoIncrement="true" name="id" type="BIGINT">

 <constraints nullable="false" primaryKey="true"/>

 </column>

 <column name="name" type="VARCHAR(100)">

 <constraints unique="true"/>

 </column>

 <column name="description" type="VARCHAR(500)"/>

 </createTable>

 </changeSet>

</databaseChangeLog>


By default, custom database migration changelogs are executed in context tenant_db.

That makes sure your changes will be applied to the tenant database (read: main

database and not the tenant store database). In theory you could also target the tenant

configuration database, but it’s not recommended to do that.

Deploying Custom Modules

Custom modules (better: the JAR files) only need to be dropped in Fineract’s libs folder if you run

Fineract from the Spring Boot JAR file. Dynamic loading of external JARs is provided since Fineract

version 1.5.0. For your convenience we’ve created a separate Docker image module that automatically

includes your custom modules (see custom/docker). You can build this Docker image with

90

./gradlew :custom:docker:jibDockerBuild

The Docker image with included custom modules is called fineract-custom.


We’ll provide soon a way to customize the Docker image parameters (image name,

JVM implementation, JVM args, ports etc.).

Outlook

If this proof of concept is accepted we could prepare more of Fineract’s internal services to be

replaceable. This approach works already very well even if we don’t have proper JAR libraries

published on Maven Central. It’s an important goal to separate customized code from Fineract’s

internals to have soon real modules.

91

Resilience

Introduction Resilience

Fineract had handcrafted retry loops in place for the longest time. A typical retry code would have

looked like this:

Legacy retry code

 @Override

 @SuppressWarnings("AvoidHidingCauseException")

 @SuppressFBWarnings(value = {

 "DMI_RANDOM_USED_ONLY_ONCE" }, justification = "False positive for random

object created and used only once")

 public CommandProcessingResult logCommandSource(final CommandWrapper wrapper) {

 boolean isApprovedByChecker = false;

 // check if is update of own account details

 if (wrapper.isUpdateOfOwnUserDetails(this.context.authenticatedUser(wrapper)

.getId())) {

 // then allow this operation to proceed.

 // maker checker doesn't mean anything here.

 isApprovedByChecker = true; // set to true in case permissions have

 // been maker-checker enabled by

 // accident.

 } else {

 // if not user changing their own details - check user has

 // permission to perform specific task.

 this.context.authenticatedUser(wrapper).validateHasPermissionTo(wrapper

.getTaskPermissionName());

 }

 validateIsUpdateAllowed();

 final String json = wrapper.getJson();

 CommandProcessingResult result = null;

 JsonCommand command;

 int numberOfRetries = 0; ①

 int maxNumberOfRetries = ThreadLocalContextUtil.getTenant().getConnection()

.getMaxRetriesOnDeadlock();

 int maxIntervalBetweenRetries = ThreadLocalContextUtil.getTenant().getConnection

().getMaxIntervalBetweenRetries();

 final JsonElement parsedCommand = this.fromApiJsonHelper.parse(json);

 command = JsonCommand.from(json, parsedCommand, this.fromApiJsonHelper, wrapper

.getEntityName(), wrapper.getEntityId(),

 wrapper.getSubentityId(), wrapper.getGroupId(), wrapper.getClientId(),

wrapper.getLoanId(), wrapper.getSavingsId(),

92

 wrapper.getTransactionId(), wrapper.getHref(), wrapper.getProductId(),

wrapper.getCreditBureauId(),

 wrapper.getOrganisationCreditBureauId(), wrapper.getJobName());

 while (numberOfRetries <= maxNumberOfRetries) { ②

 try {

 result = this.processAndLogCommandService.executeCommand(wrapper,

command, isApprovedByChecker);

 numberOfRetries = maxNumberOfRetries + 1; ③

 } catch (CannotAcquireLockException | ObjectOptimisticLockingFailureException

exception) {

 log.debug("The following command {} has been retried {} time(s)",

command.json(), numberOfRetries);

 /***

 * Fail if the transaction has been retired for maxNumberOfRetries

 **/

 if (numberOfRetries >= maxNumberOfRetries) {

 log.warn("The following command {} has been retried for the max

allowed attempts of {} and will be rolled back",

 command.json(), numberOfRetries);

 throw exception;

 }

 /***

 * Else sleep for a random time (between 1 to 10 seconds) and continue

 **/

 try {

 int randomNum = RANDOM.nextInt(maxIntervalBetweenRetries + 1);

 Thread.sleep(1000 + (randomNum * 1000));

 numberOfRetries = numberOfRetries + 1; ④

 } catch (InterruptedException e) {

 throw exception;

 }

 } catch (final RollbackTransactionAsCommandIsNotApprovedByCheckerException e)

{

 numberOfRetries = maxNumberOfRetries + 1; ③

 result = this.processAndLogCommandService.logCommand(e

.getCommandSourceResult());

 }

 }

 return result;

 }

① counter

② while loop

③ increment to abort

④ increment

93

For better code quality and readability we introduced Resilience4j:

Annotation based retry

 private final CommandProcessingService processAndLogCommandService;

 private final SchedulerJobRunnerReadService schedulerJobRunnerReadService;

 private final ConfigurationDomainService configurationService;

 @Override

 public CommandProcessingResult logCommandSource(final CommandWrapper wrapper) {

 boolean isApprovedByChecker = false;

 // check if is update of own account details

 if (wrapper.isUpdateOfOwnUserDetails(this.context.authenticatedUser(wrapper)

.getId())) {

 // then allow this operation to proceed.

 // maker checker doesnt mean anything here.

 isApprovedByChecker = true; // set to true in case permissions have

 // been maker-checker enabled by

 // accident.

 } else {

 // if not user changing their own details - check user has

 // permission to perform specific task.

 this.context.authenticatedUser(wrapper).validateHasPermissionTo(wrapper

.getTaskPermissionName());

 }

 validateIsUpdateAllowed();

 final String json = wrapper.getJson();

 final JsonElement parsedCommand = this.fromApiJsonHelper.parse(json);

 JsonCommand command = JsonCommand.from(json, parsedCommand, this

.fromApiJsonHelper, wrapper.getEntityName(), wrapper.getEntityId(),

 wrapper.getSubentityId(), wrapper.getGroupId(), wrapper.getClientId(),

wrapper.getLoanId(), wrapper.getSavingsId(),

 wrapper.getTransactionId(), wrapper.getHref(), wrapper.getProductId(),

wrapper.getCreditBureauId(),

 wrapper.getOrganisationCreditBureauId(), wrapper.getJobName(), wrapper

.getLoanExternalId());

Command

CommandProcessingService

TBD

Retry-able service function executeCommand

94

https://resilience4j.readme.io/docs

 private final ToApiJsonSerializer<Map<String, Object>> toApiJsonSerializer;

 private final ToApiJsonSerializer<CommandProcessingResult> toApiResultJsonSerializer;

 private final ConfigurationDomainService configurationDomainService;

 private final CommandHandlerProvider commandHandlerProvider;

 private final IdempotencyKeyResolver idempotencyKeyResolver;

 private final CommandSourceService commandSourceService;

 private final FineractRequestContextHolder fineractRequestContextHolder;

 private final Gson gson = GoogleGsonSerializerHelper.createSimpleGson();

 @Override

 @Retry(name = "executeCommand", fallbackMethod = "fallbackExecuteCommand")

 public CommandProcessingResult executeCommand(final CommandWrapper wrapper, final

JsonCommand command,

 final boolean isApprovedByChecker) {

 // Do not store the idempotency key because of the exception handling

 setIdempotencyKeyStoreFlag(false);

 Long commandId = (Long) fineractRequestContextHolder.getAttribute

(COMMAND_SOURCE_ID, null);

 boolean isRetry = commandId != null;

 boolean isEnclosingTransaction = BatchRequestContextHolder.

isEnclosingTransaction();

 CommandSource commandSource = null;

 String idempotencyKey;

 if (isRetry) {

 commandSource = commandSourceService.getCommandSource(commandId);

 idempotencyKey = commandSource.getIdempotencyKey();

 } else if ((commandId = command.commandId()) != null) { // action on the command

itself

 commandSource = commandSourceService.getCommandSource(commandId);

 idempotencyKey = commandSource.getIdempotencyKey();

 } else {

 idempotencyKey = idempotencyKeyResolver.resolve(wrapper);

 }

 exceptionWhenTheRequestAlreadyProcessed(wrapper, idempotencyKey, isRetry);

 AppUser user = context.authenticatedUser(wrapper);

 if (commandSource == null) {

 if (isEnclosingTransaction) {

 commandSource = commandSourceService.getInitialCommandSource(wrapper,

command, user, idempotencyKey);

 } else {

 commandSource = commandSourceService.saveInitialNewTransaction(wrapper,

command, user, idempotencyKey);

 commandId = commandSource.getId();

 }

95

 }

 if (commandId != null) {

 storeCommandIdInContext(commandSource); // Store command id as a request

attribute

 }

 boolean isMakerChecker = configurationDomainService.isMakerCheckerEnabledForTask

(wrapper.taskPermissionName());

 if (isApprovedByChecker || (isMakerChecker && user.isCheckerSuperUser())) {

 commandSource.markAsChecked(user);

 }

 setIdempotencyKeyStoreFlag(true);

 final CommandProcessingResult result;

 try {

 result = commandSourceService.processCommand(findCommandHandler(wrapper),

command, commandSource, user, isApprovedByChecker,

 isMakerChecker);

 } catch (Throwable t) { // NOSONAR

 RuntimeException mappable = ErrorHandler.getMappable(t);

 ErrorInfo errorInfo = commandSourceService.generateErrorInfo(mappable);

 Integer statusCode = errorInfo.getStatusCode();

 commandSource.setResultStatusCode(statusCode);

 commandSource.setResult(errorInfo.getMessage());

 if (statusCode != SC_OK) {

 commandSource.setStatus(ERROR.getValue());

 }

 if (!isEnclosingTransaction) { // TODO: temporary solution

 commandSource = commandSourceService.saveResultNewTransaction

(commandSource);

 }

 // must not throw any exception; must persist in new transaction as the

current transaction was already

 // marked as rollback

 publishHookErrorEvent(wrapper, command, errorInfo);

 throw mappable;

 }

 commandSource.setResultStatusCode(SC_OK);

 commandSource.updateForAudit(result);

 commandSource.setResult(toApiResultJsonSerializer.serializeResult(result));

 commandSource.setStatus(PROCESSED.getValue());

96

Fallback function fallbackExecuteCommand

 fineractRequestContextHolder.setAttribute(COMMAND_SOURCE_ID, savedCommandSource

.getId());

 }

 private void publishHookErrorEvent(CommandWrapper wrapper, JsonCommand command,

ErrorInfo errorInfo) {

 publishHookEvent(wrapper.entityName(), wrapper.actionName(), command, gson.

toJson(errorInfo));

 }

 private void exceptionWhenTheRequestAlreadyProcessed(CommandWrapper wrapper, String

idempotencyKey, boolean retry) {

 CommandSource command = commandSourceService.findCommandSource(wrapper,

idempotencyKey);

Retry configuration for executeCommand

fineract.report.export.s3.bucket=${FINERACT_REPORT_EXPORT_S3_BUCKET_NAME:}

fineract.report.export.s3.enabled=${FINERACT_REPORT_EXPORT_S3_ENABLED:false}

fineract.jpa.statementLoggingEnabled=${FINERACT_STATEMENT_LOGGING_ENABLED:false}

fineract.database.defaultMasterPassword=${FINERACT_DEFAULT_MASTER_PASSWORD:fineract}

Jobs

SchedularWritePlatformService

 This service has a typo and should be called SchedulerWritePlatformService.

TBD

97

Retry-able service function processJobDetailForExecution

 @Transactional

 @Override

 @Retry(name = "processJobDetailForExecution", fallbackMethod =

"fallbackProcessJobDetailForExecution")

 public boolean processJobDetailForExecution(final String jobKey, final String

triggerType) {

 boolean isStopExecution = false;

 final ScheduledJobDetail scheduledJobDetail = this.scheduledJobDetailsRepository

.findByJobKeyWithLock(jobKey);

 if (scheduledJobDetail.isCurrentlyRunning() || (triggerType.equals

(SchedulerServiceConstants.TRIGGER_TYPE_CRON)

 && scheduledJobDetail.getNextRunTime().after(new Date()))) {

 isStopExecution = true;

 }

 final SchedulerDetail schedulerDetail = retriveSchedulerDetail();

 if (triggerType.equals(SchedulerServiceConstants.TRIGGER_TYPE_CRON) &&

schedulerDetail.isSuspended()) {

 scheduledJobDetail.setTriggerMisfired(true);

 isStopExecution = true;

 } else if (!isStopExecution) {

 scheduledJobDetail.setCurrentlyRunning(true);

 scheduledJobDetail.setMismatchedJob(false);

 }

 this.scheduledJobDetailsRepository.save(scheduledJobDetail);

 return isStopExecution;

 }

Fallback function fallbackProcessJobDetailForExecution

 @SuppressWarnings("unused")

 public boolean fallbackProcessJobDetailForExecution(Exception e) {

 return false;

Retry configuration for processJobDetailForExecution

fineract.notification.user-notification-

system.enabled=${FINERACT_USER_NOTIFICATION_SYSTEM_ENABLED:true}

fineract.logging.json.enabled=${FINERACT_LOGGING_JSON_ENABLED:false}

fineract.sampling.enabled=${FINERACT_SAMPLING_ENABLED:false}

98

Loan

LoanWritePlatformService

TBD

Retry-able service function recalculateInterest

 final Map<String, Object> changes = new LinkedHashMap<>();

 changes.put("transactionDate", command.stringValueOfParameterNamed(

"transactionDate"));

 changes.put("transactionAmount", command.stringValueOfParameterNamed(

"transactionAmount"));

 changes.put("locale", command.locale());

 changes.put("dateFormat", command.dateFormat());

 changes.put(LoanApiConstants.externalIdParameterName, txnExternalId);

 Loan loan = this.loanAssembler.assembleFrom(loanId);

 // Build loan schedule generator dto

 LocalDate recalculateFrom = loan.

isInterestBearingAndInterestRecalculationEnabled() ? transactionDate : null;

 final ScheduleGeneratorDTO scheduleGeneratorDTO = this.loanUtilService

.buildScheduleGeneratorDTO(loan, recalculateFrom, null);

 // Domain rule validations

 this.loanTransactionValidator.validateRefund(loan, loanTransactionType,

transactionDate, scheduleGeneratorDTO);

 // Create payment details

 final PaymentDetail paymentDetail = this.paymentDetailWritePlatformService

.createAndPersistPaymentDetail(command, changes);

 // Create note

 createNote(loan, command, changes);

 // Initial transaction ids for journal entry generation

 final List<Long> existingTransactionIds = loan.findExistingTransactionIds();

 final List<Long> existingReversedTransactionIds = loan

.findExistingReversedTransactionIds();

 // Create refund transaction(s)

 Pair<LoanTransaction, LoanTransaction> refundTransactions =

loanAccountDomainService.makeRefund(loan, scheduleGeneratorDTO,

 loanTransactionType, transactionDate, transactionAmount, paymentDetail,

txnExternalId);

 LoanTransaction refundTransaction = refundTransactions.getLeft();

 LoanTransaction interestRefundTransaction = refundTransactions.getRight();

 // Accrual reprocessing

 if (loan.isInterestBearingAndInterestRecalculationEnabled()) {

 loanAccrualsProcessingService.reprocessExistingAccruals(loan);

 loanAccrualsProcessingService.processIncomePostingAndAccruals(loan);

 }

99

Fallback function fallbackRecalculateInterest

 loanAccountDomainService.updateAndSavePostDatedChecksForIndividualAccount(loan,

refundTransaction);

 if (interestRefundTransaction != null) {

 loanAccountDomainService.updateAndSavePostDatedChecksForIndividualAccount

(loan, refundTransaction);

 }

 // Collateral management

 loanAccountDomainService

.updateAndSaveLoanCollateralTransactionsForIndividualAccounts(loan, refundTransaction);

 if (interestRefundTransaction != null) {

 loanAccountDomainService

.updateAndSaveLoanCollateralTransactionsForIndividualAccounts(loan, refundTransaction);

 }

 // Raise business events

 loanAccrualsProcessingService.processAccrualsOnInterestRecalculation(loan, loan

.isInterestBearingAndInterestRecalculationEnabled(),

 false);

Retry configuration for recalculateInterest

fineract.sampling.samplingRate=${FINERACT_SAMPLING_RATE:1000}

fineract.sampling.sampledClasses=${FINERACT_SAMPLED_CLASSES:}

fineract.sampling.resetPeriodSec=${FINERACT_SAMPLING_RESET_PERIOD_IN_SEC:60}

fineract.module.investor.enabled=${FINERACT_MODULE_INVESTOR_ENABLED:true}

Savings

SavingsAccountWritePlatformService

TBD

Retry-able service function postInterest

 postInterestOnDate = transactionDate;

 }

 savingsAccountData = this.savingsAccountInterestPostingService.postInterest

(mc, today, isInterestTransfer,

 isSavingsInterestPostingAtCurrentPeriodEnd,

financialYearBeginningMonth, postInterestOnDate, backdatedTxnsAllowedTill,

 savingsAccountData);

 if (!backdatedTxnsAllowedTill) {

100

 List<SavingsAccountTransactionData> transactions = savingsAccountData

.getSavingsAccountTransactionData();

 for (SavingsAccountTransactionData accountTransaction : transactions) {

 if (accountTransaction.getId() == null) {

 savingsAccountData.setNewSavingsAccountTransactionData

(accountTransaction);

 }

 }

 }

 savingsAccountData.setExistingTransactionIds(existingTransactionIds);

 savingsAccountData.setExistingReversedTransactionIds

(existingReversedTransactionIds);

 }

 return savingsAccountData;

 }

 @Override

 public CommandProcessingResult reverseTransaction(final Long savingsId, final Long

transactionId,

 final boolean allowAccountTransferModification, final JsonCommand command) {

 final boolean backdatedTxnsAllowedTill = this.savingAccountAssembler

.getPivotConfigStatus();

 final boolean isBulk = command.booleanPrimitiveValueOfParameterNamed("isBulk");

 final SavingsAccount account = this.savingAccountAssembler.assembleFrom(

savingsId, backdatedTxnsAllowedTill);

 final SavingsAccountTransaction savingsAccountTransaction = this

.savingsAccountTransactionRepository

 .findOneByIdAndSavingsAccountId(transactionId, savingsId);

 if (savingsAccountTransaction == null) {

 throw new SavingsAccountTransactionNotFoundException(savingsId,

transactionId);

 }

 if (!allowAccountTransferModification

 && this.accountTransfersReadPlatformService.isAccountTransfer

(transactionId, PortfolioAccountType.SAVINGS)) {

 throw new PlatformServiceUnavailableException(

"error.msg.saving.account.transfer.transaction.update.not.allowed",

 "Savings account transaction:" + transactionId + " update not allowed

as it involves in account transfer",

 transactionId);

 }

101

Fallback function fallbackPostInterest

 boolean isInterestTransfer = false;

 LocalDate postInterestOnDate = null;

 final MathContext mc = MathContext.DECIMAL64;

 boolean postReversals = false;

 if (account.isBeforeLastPostingPeriod(transactionDate, backdatedTxnsAllowedTill))

{

 final LocalDate today = DateUtils.getBusinessLocalDate();

 account.postInterest(mc, today, isInterestTransfer,

isSavingsInterestPostingAtCurrentPeriodEnd, financialYearBeginningMonth,

 postInterestOnDate, isInterestTransfer, postReversals);

 } else {

 final LocalDate today = DateUtils.getBusinessLocalDate();

 account.calculateInterestUsing(mc, today, isInterestTransfer,

isSavingsInterestPostingAtCurrentPeriodEnd,

 financialYearBeginningMonth, postInterestOnDate,

backdatedTxnsAllowedTill, postReversals);

 }

Retry configuration for postInterest

fineract.insecure-http-client=${FINERACT_INSECURE_HTTP_CLIENT:true}

fineract.client-connect-timeout=${FINERACT_CLIENT_CONNECT_TIMEOUT:30}

fineract.client-read-timeout=${FINERACT_CLIENT_READ_TIMEOUT:30}

fineract.client-write-timeout=${FINERACT_CLIENT_WRITE_TIMEOUT:30}

sql validation

102

Security

TBD

OAuth

Fineract has a (basic) OAuth2 support based on Spring Boot Security. Here’s how to use it:

Build

You must re-build the distribution JAR (or WAR) using the special -Psecurity=oauth flag:

./gradlew bootRun -Psecurity=oauth

Downloads from fineract.apache.org, or using e.g. the hub.docker.com/r/apache/fineract container

image, or on www.fineract.dev, this will not work, because they have not been built using this flag.

Previous versions of Fineract included a built-in authorisation server for issuing OAuth tokens.

However, as the spring-security-oauth2 package was deprecated and replaced by built-in OAuth

support in Spring Security, this is no longer supported as part of the package. Instead, you need to run

a separate OAuth authorization server (e.g. github.com/spring-projects/spring-authorization-server) or

use a 3rd-party OAuth authorization provider (en.wikipedia.org/wiki/List_of_OAuth_providers)

This instruction describes how to get Fineract OAuth working with a Keycloak (keycloak.org) based

authentication provider running in a Docker container. The steps required for other OAuth providers

will be similar.

Set up Keycloak

1. From terminal, run: 'docker run -p 9000:8080 -e KEYCLOAK_USER=admin -e

KEYCLOAK_PASSWORD=admin quay.io/keycloak/keycloak:15.0.2'

2. Go to URL 'http://localhost:9000/auth/admin' and login with admin/admin

3. Hover your mouse over text "Master" and click on "Add realm"

4. Enter name "fineract" for your realm

5. Click on tab "Users" on the left, then "Add user" and create user with username "mifos"

6. Click on tab "Credentials" at the top, and set password to "password", turning "temporary" setting to

off

7. Click on tab "Clients" on the left, and create client with ID 'community-app'

8. In settings tab, set 'access-type' to 'confidential' and enter 'localhost' in the valid redirect URIs.

9. In credentials tab, copy string in field 'secret' as this will be needed in the step to request the access

103

https://fineract.apache.org
https://hub.docker.com/r/apache/fineract
https://www.fineract.dev
https://github.com/spring-projects/spring-authorization-server
https://en.wikipedia.org/wiki/List_of_OAuth_providers
http://keycloak.org

token

Finally we need to change Keycloak configuration so that it uses the username as a subject of the

token:

1. Choose client 'community-app' in the tab 'Clients'

2. Go to tab 'Mappers' and click on 'Create'

3. Enter 'usernameInSub' as 'Name'

4. Choose mapper type 'User Property'

5. Enter 'username' into the field 'Property' and 'sub' into the field 'Token Claim Name'. Choose 'String'

as 'Claim JSON Type'

You are now ready to test out OAuth:

Retrieve an access token from Keycloak

curl --location --request POST \

'http://localhost:9000/auth/realms/fineract/protocol/openid-connect/token' \

--header 'Content-Type: application/x-www-form-urlencoded' \

--data-urlencode 'username=mifos' \

--data-urlencode 'password=password' \

--data-urlencode 'client_id=community-app' \

--data-urlencode 'grant_type=password' \

--data-urlencode 'client_secret=<enter the client secret from credentials tab>'

The reply should contain a field 'access_token'. Copy the field’s value and use it in the API call below:

Invoke APIs and pass Authorization: bearer … header

curl --location --request GET \

'https://localhost:8443/fineract-provider/api/v1/offices' \

--header 'Fineract-Platform-TenantId: default' \

--header 'Authorization: bearer <enter the value of the access_token field>'

 See also fineract.apache.org/legacy-docs/apiLive.htm#authentication_oauth

104

https://fineract.apache.org/legacy-docs/apiLive.htm#authentication_oauth

Testing

TBD

Cucumber

TBD

Cucumber Cheatsheet

Cucumber is a test framework based on Behavior-Driven Development (BDD). Tests are written in

plain text with very basic syntax rules. These rules form a mini language that is called Gherkin.

A specification resembles spoken language. This makes it ideal for use with non-technical people that

have domain specific knowledge. The emphasis of Cucumber lies on finding examples to describe your

test cases. The few keywords and language rules are easy to explain to anyone (compared JUnit for

example).

Keywords

The Gherkin language has the following keywords:

• Feature

• Rule

• Scenario Outline or Scenario Template

• Example or Scenario

• Examples or Scenarios

• Background

• Given

• And

• But

• When

• Then

There are a couple of additional signs used in Gherkin:

• | is as column delimiters in Examples tables

• with @ you can assign any kind of tags to categorize the specs (or e.g. relate them to certain Jira

tickets)

• # is used to indicate line comments

105


The tag @ignore is used to skip tests. This is a somewhat arbitrary choice (we could use

any other tag to indicate temporarily disabled tests).

Each non-empty line of a test specification needs to start with one of these keywords. The text blocks

that follows the keywords are mapped to so called step definitions that contain the actual test code.

A typical Cucumber test specification written in Gherkin looks like this:

Feature: Template Service

 @template

 Scenario Outline: Verify that mustache templates have expected results

 Given A mustache template file <template>

 Given A JSON data file <json>

 When The user merges the template with data

 Then The result should match the content of file <result>

 Examples:

 | template | json | result |

 | hello.mustache | hello.json | hello.txt |

 | loan.mustache | loan.json | loan.html |

 | array.loop.mustache | array.json | array.loop.txt |

 | array.index.mustache | array.json | array.index.txt |

The corresponding step definitions would look like this:

package org.apache.fineract.template.service;

import static org.junit.jupiter.api.Assertions.assertEquals;

import com.google.common.reflect.TypeToken;

import com.google.gson.Gson;

import com.google.gson.JsonElement;

import com.google.gson.JsonParser;

import io.cucumber.java8.En;

import java.io.IOException;

import java.lang.reflect.Type;

import java.nio.charset.StandardCharsets;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import org.apache.commons.io.IOUtils;

import org.apache.fineract.template.domain.Template;

import org.apache.fineract.template.domain.TemplateMapper;

import org.springframework.beans.factory.annotation.Autowired;

106

public class TemplateServiceStepDefinitions implements En {

 @Autowired

 private TemplateMergeService tms;

 private String template;

 private Map<String, Object> data;

 private String result;

 public TemplateServiceStepDefinitions() {

 Given("/^A mustache template file (.*)$/", (String file) -> {

 template = IOUtils.resourceToString("templates/" + file, StandardCharsets

.UTF_8,

 TemplateServiceStepDefinitions.class.getClassLoader());

 });

 Given("/^A JSON data file (.*)$/", (String file) -> {

 data = parse(IOUtils.resourceToString("templates/" + file, StandardCharsets

.UTF_8,

 TemplateServiceStepDefinitions.class.getClassLoader()));

 });

 When("The user merges the template with data", () -> {

 result = compile(template, data);

 });

 Then("/^The result should match the content of file (.*)$/", (String file) -> {

 String expected = IOUtils.resourceToString("results/" + file,

StandardCharsets.UTF_8,

 TemplateServiceStepDefinitions.class.getClassLoader());

 assertEquals(expected, result);

 });

 }

 private String compile(String templateText, Map<String, Object> scope) throws

IOException {

 List<TemplateMapper> mappers = new ArrayList<>();

 Template template = new Template("TemplateName", templateText, null, null,

mappers);

 return tms.compile(template, scope);

 }

 private Map<String, Object> parse(String data) {

 Gson gson = new Gson();

 Type ssMap = new TypeToken<Map<String, Object>>() {}.getType();

107

 JsonElement json = JsonParser.parseString(data);

 return gson.fromJson(json, ssMap);

 }

}


This example is an actual test specification that you can find in the fineract-provider

module.

Feature

This keyword is used to group scenarios and to group related scenarios. All Gherkin specifications

must start with the word Feature.

Descriptions

A description is any non-empty line that doesn’t start with a keyword. Descriptions can be placed

under the keywords:

• Feature

• Rule

• Background

• Example/Scenario

• Scenario Outline

Rule

Rule is used to group multiple related scenarios together.

Example/Scenario

This is the important part of the specification as it should describe the business logic in more detail

with the usage of steps (usually Given, When, Then)

Steps

TBD

Given

TBD

When

TBD

108

Then

TBD

And, But

TBD

Background

TBD

Scenario Outline

TBD

Examples/Tables

TBD

Outlook

As a proof of concept we’ve converted all unit tests in fineract-provider into Cucumber tests. The more

interesting part starts when we’ll attack the integration tests with over 400 mostly business logic

related tests. These tests fit very well in Cucumber’s test specification structure (a lot of if-then-else or

in Gherkin: Given-When-Then). Migrating all tests will take a while, but we would already recommend

trying to implement tests as Cucumber specifications. It should be relatively easy to convert these tests

into the new syntax.

Hopefully this will motivate even more people from the broader Fineract community to participate in

the project by sharing their domain specific knowledge as Cucumber specifications. Specifications are

written in English (although not a technical requirement).


Have a look at the specifications in fineract-provider for an initial inspiration. For

more information please see cucumber.io/docs

Unit Testing

TBD

Integration Testing

TBD

109

https://cucumber.io/docs

Fineract Documentation Guide

TBD

File and Folder Layout

The general rules are

• keep things as flat as possible (avoid sub-folders as much as possible)

• DRY (don’t repeat yourself): don’t copy and paste code pieces, use AsciiDoc’s include feature and

reference files/-sections from the project folder

• images are located in fineract-doc/src/docs/en/images (or sub-folders)

• diagrams are located in fineract-doc/src/docs/en/diagrams (or sub-folders)

• specific chapters are located in fineract-doc/src/docs/en/chapters

• every chapter has its own folder and at least one index.adoc file

• it’s recommended to keep the chapters flat (i. e. no sub-folders in the chapter folders)

• it’s recommended to create one file per chapter section; like that you can re-arrange sections

very easily in the index.adoc file


These rules are not entirely set in stone and could be modified if necessary. If you see

any issues then please report them on the mailing list or open a Jira ticket.

AsciiDoc

Cheatsheet

You can find the definitive manual on AsciiDoc syntax at AsciiDoc documentation. To help people get

started, however, here is a simpler cheat sheet.

AsciiDoc vs Asciidoctor (format vs tool)

When we refer to AsciiDoc then we mean the language or format that this documentation is written in.

AsciiDoc is a markup language similar to Markdown (but more powerful and expressive) designed for

technical documentation. You don’t need necessarily any specialized editors or tools to write your

documentation in AsciiDoc, a plain text editor will do, but there are plenty of choices that give you a

better experience (in this documentation we describe the basic usage with AsciiDoc plugins for IntelliJ,

Eclipse and VSCode).

Asciidoctor on the other hand is the command line tool we use to transform documents written in

AsciiDoc into HTML and PDF (Epub3 and Docbook are also available). There are three variants

available:

110

mailto:dev@fineract.apache.org
https://issues.apache.org
https://docs.asciidoctor.org/asciidoc/latest

• Asciidoctor (written in Ruby)

• Asciidoctor.js (written in JavaScript, often used for browser previews)

• AsciidoctorJ (Java lib that integrates the Ruby implementation via JRuby, e. g. the Asciidoctor Gradle

plugin is based on that)


Sometimes you will still find documentation related to the original incarnation of

AsciiDoc/tor (written in Python). The format evolved quite a bit since then and the

tools try to maintain a certain degree of backward compatibility, but there is no

guarantee. We prefer to use the latest language specs as documented here.

Basic AsciiDoc Syntax

Bold

Put asterisks around text to make it bold.

 More info at docs.asciidoctor.org/asciidoc/latest/text/bold

Italics

Use underlines on either side of a string to put text into italics.

 More info at docs.asciidoctor.org/asciidoc/latest/text/italic

Headings

Equal signs (=) are used for heading levels. Each equal sign is a level. Each page can only have one top

level (i.e., only one section with a single =).

Levels should be appropriately nested. During the build, validation occurs to ensure that level 3s are

preceded by level 2s, level 4s are preceded by level 3s, etc. Including out-of-sequence heading levels

(such as a level 3 then a level 5) will not fail the build, but will produce an error.

 More info at docs.asciidoctor.org/asciidoc/latest/sections/titles-and-levels/

Code Examples

Use backticks ` for text that should be monospaced, such as code or a class name in the body of a

paragraph.

 More info at docs.asciidoctor.org/asciidoc/latest/text/monospace/

Longer code examples can be separated from text with source blocks.

These allow defining the syntax being used so the code is properly highlighted.

111

https://docs.asciidoctor.org/asciidoc/latest
https://docs.asciidoctor.org/asciidoc/latest/text/bold
https://docs.asciidoctor.org/asciidoc/latest/text/italic
https://docs.asciidoctor.org/asciidoc/latest/sections/titles-and-levels/
https://docs.asciidoctor.org/asciidoc/latest/text/monospace/

Example Source Block

[source,xml]

<field name="id" type="string" indexed="true" stored="true" required="true"

multiValued="false" />

If your code block will include line breaks, put 4 hyphens (----) before and after the entire block.

 More info at docs.asciidoctor.org/asciidoc/latest/verbatim/source-blocks/

Source Block Syntax Highlighting

The HTML output uses Rouge to add syntax highlighting to code examples. This is done by adding the

language of the code block after the source, as shown in the above example source block (xml in that

case).

Rouge has a long selection of lexers available. You can see the full list at github.com/rouge-ruby/rouge/

wiki/List-of-supported-languages-and-lexers. Use one of the valid short names to get syntax

highlighting for that language.

Ideally, we will have an appropriate lexer to use for all source blocks, but that’s not possible.

When in doubt, choose text, or leave it blank.

Importing Code Snippets from Other Files

The build system has the ability to "include" snippets located in other files — even non-AsciiDoc files

such as *.java source code files.

We’ve configured a global attribute called {rootdir} that you can use to reference these files

consistently from Fineract’s project root folder.

Snippets are bounded by tag comments placed at the start and end of the section you would like to

import. Opening tags look like: // tag::snippetName[]. Closing tags follow the format: //

end::snippetName[].

Snippets can be inserted into an .adoc file using an include directive, following the format:

include::{rootdir}/<directory-under-root-folder>/<file-name>[tag=snippetName].


You could also use relative paths to reference include files, but it is preferred to

always use the root folder as a starting point. Like this you can be sure that the

preview in your editor of choice works.

For example, if we wanted to highlight a specific section of the following Cucumber test definition

(more on that in section Cucumber Testing) ClasspathDuplicatesStepDefinitions.java file located under

fineract-provider/src/test/java/org/apache/fineract/infrastructure/classpath/.

112

https://docs.asciidoctor.org/asciidoc/latest/verbatim/source-blocks/
https://github.com/rouge-ruby/rouge/wiki/List-of-supported-languages-and-lexers
https://github.com/rouge-ruby/rouge/wiki/List-of-supported-languages-and-lexers

[source,java,indent=0]

include::{rootdir}/fineract-

provider/src/test/java/org/apache/fineract/infrastructure/classpath/ClasspathDuplicatesSt

epDefinitions.java[tag=then]

For more information on the include directive, see the documentation at docs.asciidoctor.org/asciidoc/

latest/directives/include.

Block Titles

Titles can be added to most blocks (images, source blocks, tables, etc.) by simply prefacing the title with

a period (.). For example, to add a title to the source block example above:

.Example ID field

[source,xml]

<field name="id" type="string" indexed="true" stored="true" required="true"

multiValued="false" />

 More info at docs.asciidoctor.org/asciidoc/latest/blocks/add-title

Links

Link to Sites on the Internet

When converting content to HTML, Asciidoctor will automatically render many link types (such as

http: and mailto:) without any additional syntax. However, you can add a name to a link by adding the

URI followed by square brackets:

http://fineract.apache.org/[Fineract Website]

 More info at docs.asciidoctor.org/asciidoc/latest/macros/url-macro

Link to Other Pages/Sections of the Guide

A warning up front, linking to other pages can be a little painful. There are slightly different rules

depending on the type of link you want to create, and where you are linking from. The build process

includes a validation for internal or inter-page links, so if you can build the docs locally, you can use

that to verify you constructed your link properly. With all the below examples, you can add text to

display as the link title by putting the display text in brackets after the link, as in:

113

https://docs.asciidoctor.org/asciidoc/latest/directives/include
https://docs.asciidoctor.org/asciidoc/latest/directives/include
https://docs.asciidoctor.org/asciidoc/latest/blocks/add-title
https://docs.asciidoctor.org/asciidoc/latest/macros/url-macro

xref:indexing-guide:schema-api.adoc#modify-the-schema[Modify the Schema]

You can also use the title of the Page or Section you are linking to by using an empty display text.

This is useful in case the title of the page or section changes. In that case you won’t need to change the

display text for every link that refers to that page/section.

See an example below:

xref:indexing-guide:schema-api.adoc#modify-the-schema[]

Link to a Section on the Same Page

To link to an anchor (or section title) on the same page, you can simply use double angle brackets (<<

>>) around the anchor/heading/section title you want to link to. Any section title (a heading that starts

with equal signs) automatically becomes an anchor during conversion and is available for deep

linking.

Example

If I have a section on a page that looks like this (from process.adoc):

== Steps

Common parameters for all steps are:

To link to this section from another part of the same process.adoc page, I simply need to put the

section title in double angle brackets, as in:

See also the <<Steps>> section.

The section title will be used as the display text; to customize that add a comma after the the section

title, then the text you want used for display.


More info at docs.asciidoctor.org/asciidoc/latest/macros/xref/#internal-cross-

references

Link to a Section with an Anchor ID

When linking to any section (on the same page or another one), you must also be aware of any pre-

defined anchors that may be in use (these will be in double brackets, like [[]]).

When the page is converted, those will be the references your link needs to point to.

114

https://docs.asciidoctor.org/asciidoc/latest/macros/xref/#internal-cross-references
https://docs.asciidoctor.org/asciidoc/latest/macros/xref/#internal-cross-references

Example

Take this example from configsets-api.adoc:

[[configsets-create]]

== Create a ConfigSet

To link to this section, there are two approaches depending on where you are linking from:

• From the same page, simply use the anchor name: <<configsets-create>>.

• From another page, use the page name and the anchor name: xref:configuration-

guide:configsets-api.adoc#configsets-create[].

Link to Another Page

To link to another page or a section on another page, you must refer to the full filename and refer to

the section you want to link to.

When you want to refer the reader to another page without deep-linking to a section, Asciidoctor

allows this by merely omitting the # and section id.

Example

To construct a link to the process.adoc page, we need to refer to the file name (process.adoc), as well

as the module that the file resides in (release/).

It’s preferred to also always use the page name to give the reader better context for where the link

goes.

As in:

For more about upgrades, see xref:release:process.adoc[Fineract Release Process].

Link to Another Page in the same folder

If the page that contains the link and the page being linked to reside in the same module, there is no

need to include the module name after xref:

Example

To construct a link to the process-step01.adoc page from process.adoc page, we do not need to

include the module name because they both reside in the upgrade-notes module.

For more information on the first step of the release process, see the section

\xref:process-step01.adoc[].

115

Link to a Section on Another Page

Linking to a section is the same conceptually as linking to the top of a page, you just need to take a little

extra care to format the anchor ID in your link reference properly.

When you link to a section on another page, you must make a simple conversion of the title into the

format of the section ID that will be created during the conversion. These are the rules that transform

the sections:

Example

TBD

 More info at docs.asciidoctor.org/asciidoc/latest/macros/inter-document-xref

Ordered and Unordered Lists

AsciiDoc supports three types of lists:

• Unordered lists

• Ordered lists

• Labeled lists

Each type of list can be mixed with the other types. So, you could have an ordered list inside a labeled

list if necessary.

Unordered Lists

Simple bulleted lists need each line to start with an asterisk (*). It should be the first character of the

line, and be followed by a space.

 More info at docs.asciidoctor.org/asciidoc/latest/lists/unordered

Ordered Lists

Numbered lists need each line to start with a period (.). It should be the first character of the line, and

be followed by a space. This style is preferred over manually numbering your list.

 More info at docs.asciidoctor.org/asciidoc/latest/lists/ordered

Description Lists

These are like question & answer lists or glossary definitions.

Each line should start with the list item followed by double colons (::), then a space or new line.

Labeled lists can be nested by adding an additional colon (such as :::, etc.). If your content will span

multiple paragraphs or include source blocks, etc., you will want to add a plus sign (+) to keep the

sections together for your reader.

116

https://docs.asciidoctor.org/asciidoc/latest/macros/inter-document-xref
https://docs.asciidoctor.org/asciidoc/latest/lists/unordered
https://docs.asciidoctor.org/asciidoc/latest/lists/ordered


We prefer this style of list for parameters because it allows more freedom in how you

present the details for each parameter. For example, it supports ordered or unordered

lists inside it automatically, and you can include multiple paragraphs and source

blocks without trying to cram them into a smaller table cell.

 More info at docs.asciidoctor.org/asciidoc/latest/lists/description

Images

There are two ways to include an image: inline or as a block. Inline images are those where text will

flow around the image. Block images are those that appear on their own line, set off from any other

text on the page. Both approaches use the image tag before the image filename, but the number of

colons after image define if it is inline or a block. Inline images use one colon (image:), while block

images use two colons (image::). Block images automatically include a caption label and a number

(such as Figure 1). If a block image includes a title, it will be included as the text of the caption.

Optional attributes allow you to set the alt text, the size of the image, if it should be a link, float and

alignment. We have defined a global attribute {imagesdir} to standardize the location for all images

(fineract-doc/src/docs/en/images).

 More info at docs.asciidoctor.org/asciidoc/latest/macros/images

Tables

Tables can be complex, but it is pretty easy to make a basic table that fits most needs.

Basic Tables

The basic structure of a table is similar to Markdown, with pipes (|) delimiting columns between rows:

|===

| col 1 row 1 | col 2 row 1|

| col 1 row 2 | col 2 row 2|

|===

Note the use of |=== at the start and end. For basic tables that’s not exactly required, but it does help to

delimit the start and end of the table in case you accidentally introduce (or maybe prefer) spaces

between the rows.

Header Rows

To add a header to a table, you need only set the header attribute at the start of the table:

117

https://docs.asciidoctor.org/asciidoc/latest/lists/description
https://docs.asciidoctor.org/asciidoc/latest/macros/images

[options="header"]

|===

| header col 1 | header col 2|

| col 1 row 1 | col 2 row 1|

| col 1 row 2 | col 2 row 2|

|===

Defining Column Styles

If you need to define specific styles to all rows in a column, you can do so with the attributes.

This example will center all content in all rows:

[cols="2*^" options="header"]

|===

| header col 1 | header col 2|

| col 1 row 1 | col 2 row 1|

| col 1 row 2 | col 2 row 2|

|===

Alignments or any other styles can be applied only to a specific column. For example, this would only

center the last column of the table:

[cols="2*,^" options="header"]

|===

| header col 1 | header col 2|

| col 1 row 1 | col 2 row 1|

| col 1 row 2 | col 2 row 2|

|===


Many more examples of formatting:

• Columns: docs.asciidoctor.org/asciidoc/latest/tables/add-columns/

• Cells and rows: docs.asciidoctor.org/asciidoc/latest/tables/add-cells-and-rows/

More Options

Tables can also be given footer rows, borders, and captions. You can determine the width of columns,

or the width of the table as a whole.

CSV or DSV can also be used instead of formatting the data in pipes.

 More info at docs.asciidoctor.org/asciidoc/latest/tables/build-a-basic-table/

118

https://docs.asciidoctor.org/asciidoc/latest/tables/add-columns/
https://docs.asciidoctor.org/asciidoc/latest/tables/add-cells-and-rows/
https://docs.asciidoctor.org/asciidoc/latest/tables/build-a-basic-table/

Admonitions (Notes, Warnings)

AsciiDoc supports several types of callout boxes, called "admonitions":

• NOTE

• TIP

• IMPORTANT

• CAUTION

• WARNING

It is enough to start a paragraph with one of these words followed by a colon (such as NOTE:). When it is

converted to HTML, those sections will be formatted properly - indented from the main text and

showing an icon inline.

You can add titles to admonitions by making it an admonition block. The structure of an admonition

block is like this:

.Title of Note

[NOTE]

====

Text of note

====

In this example, the type of admonition is included in square brackets ([NOTE]), and the title is prefixed

with a period. Four equal signs give the start and end points of the note text (which can include new

lines, lists, code examples, etc.).

 More info at docs.asciidoctor.org/asciidoc/latest/blocks/admonitions/

STEM Notation Support

We have set up the Ref Guide to be able to support STEM notation whenever it’s needed.

The AsciiMath syntax is supported by default, but LaTeX syntax is also available.

To insert a mathematical formula inline with your text, you can simply write:

stem:[a//b]

MathJax.js will render the formula as proper mathematical notation when a user loads the page. When

the above example is converted to HTML, it will look like this to a user: a//b

To insert LaTeX, preface the formula with latexmath instead of stem:

119

https://docs.asciidoctor.org/asciidoc/latest/blocks/admonitions/
http://asciimath.org/

latexmath:[tp \leq 1 - (1 - sim^{rows})^{bands}]

Long formulas, or formulas which should to be set off from the main text, can use the block syntax

prefaced by stem or latexmath:

[stem]

++++

sqrt(3x-1)+(1+x)^2 < y

++++

or for LaTeX:

[latexmath]

++++

[tp \leq 1 - (1 - sim^{rows})^{bands}]

++++

 More info at docs.asciidoctor.org/asciidoc/latest/stem/stem

Diagrams

TBD

 docs.asciidoctor.org/diagram-extension/latest

PlantUML Cheatsheet

TBD

 plantuml.com

C4 Cheatsheet

TBD

 c4model.com and github.com/plantuml-stdlib/C4-PlantUML

Archimate Cheatsheet

TBD

120

https://docs.asciidoctor.org/asciidoc/latest/stem/stem
https://docs.asciidoctor.org/diagram-extension/latest
https://plantuml.com
https://c4model.com
https://github.com/plantuml-stdlib/C4-PlantUML


www.opengroup.org/archimate-forum/archimate-overview and plantuml.com/

archimate-diagram

Vega Cheatsheet

TBD

 vega.github.io/vega-lite/

Editor

TBD

IntelliJ IDEA

Asciidoc

See: plugins.jetbrains.com/plugin/7391-asciidoc

PlantUML

See: plugins.jetbrains.com/plugin/7017-plantuml-integration

Eclipse

Asciidoc

See: marketplace.eclipse.org/content/asciidoctor-editor

PlantUML

See: plantuml.com/eclipse

VSCode

Asciidoc

See: marketplace.visualstudio.com/items?itemName=asciidoctor.asciidoctor-vscode

PlantUML

See: marketplace.visualstudio.com/items?itemName=jebbs.plantuml

121

https://www.opengroup.org/archimate-forum/archimate-overview
https://plantuml.com/archimate-diagram
https://plantuml.com/archimate-diagram
https://vega.github.io/vega-lite/
https://plugins.jetbrains.com/plugin/7391-asciidoc
https://plugins.jetbrains.com/plugin/7017-plantuml-integration
https://marketplace.eclipse.org/content/asciidoctor-editor
https://plantuml.com/eclipse
https://marketplace.visualstudio.com/items?itemName=asciidoctor.asciidoctor-vscode
https://marketplace.visualstudio.com/items?itemName=jebbs.plantuml

Antora

See: antora.org/

TBD

122

https://antora.org/

Releases

How to Release Apache Fineract documents the process how we make the source code that is available

here in this Git repository into a binary release tar.gz available on fineract.apache.org.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Heads up email

Open release branch

Prepare distr ibution for staging

Vote for distr ibution on staging

Prepare distr ibution for release

Announce release

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4. Release Schedule

Configuration

Before you can start using the Fineract release plugin to create releases you have to configure and

setup a couple of things first.

• All official communication concerning releases happens on the mailing list. Every release manager

needs to be a member of and engaging on the mailing list for credibility.

• Make sure you have edit permissions on the Apache Confluence Wiki

• You need full permissions on Apache JIRA to be able to move issues to the next release

• Git committer privileges to be allowed to create tags and the release branch

• Familiarity with building Fineract locally and creating release distributions is required

• You need to be a member of the PMC to be able to upload release artifacts; this task can be

delegated though

• A general Familiarity with PGP/GPG is recommended (at least to setup your keypairs), but the

release plugin does most of the heavy lifting

• Make sure to read the release plugin documentation for troubleshooting

Secrets

TBD

Infrastructure Team

A couple of secrets for third party services are automatically configured by the infrastructure team at

123

https://cwiki.apache.org/confluence/x/DRwIB
http://fineract.apache.org
mailto:dev@fineract.apache.org
https://cwiki.apache.org/confluence/display/FINERACT
https://issues.apache.org/jira

The Apache Foundation for the Fineract Github account. At the moment this includes environment

variables for:

• Github token (e. g. to publish Github Pages, use the Github API in Github Actions)

• Docker Hub token (to publish our Docker images)

• Sonar Cloud token (for our code quality reports)

See also:

• infra.apache.org/github-pages.html

• cwiki.apache.org/confluence/display/INFRA/Github+Actions+to+DockerHub

• github.com/apache/jmeter-site-preview

• github.com/apache/fineract-site

• github.com/apache/systemds-website/blob/main/.asf.yaml

Lastpass

It seems that Apache has some kind of org account or similar. Popped up a couple of times in the

infrastructure documentation.

TBD

1Password

Other Fineract development related secrets, e. g. for deployments of demo systems on Google Cloud,

AWS etc. are managed in a team account at 1Password. At the moment the following committers are

members of the 1Password team account:

• Ed Cable

• Michael Vorburger

• Petri Tuomola

• Arnold Galovics

• Aleksandar Vidakovic


If you need access or have any questions related to those secrets then please reach out

to one of the team members.

GPG

Generate GPG key pairs if you don’t already have them and publish them. Please use your Apache

email address when creating your GPG keypair. If you already have configured GPG and associated

your keypair with a non-Apache email address then please consider creating a separate one just for all

124

https://infra.apache.org/github-pages.html
https://cwiki.apache.org/confluence/display/INFRA/Github+Actions+to+DockerHub
https://github.com/apache/jmeter-site-preview
https://github.com/apache/fineract-site
https://github.com/apache/systemds-website/blob/main/.asf.yaml
mailto:edcable@apache.org
mailto:vorburger@apache.org
mailto:ptuomola@apache.org
mailto:arnold@apache.org
mailto:aleks@apache.org

things related to Fineract (or Apache in general).

Instructions:

1. Check your GPG version:

Input GPG version

gpg --version

Output GPG version

gpg (GnuPG) 2.2.27

libgcrypt 1.9.4

Copyright (C) 2021 Free Software Foundation, Inc.

License GNU GPL-3.0-or-later <https://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Home: /home/aleks/.gnupg

Supported algorithms:

Pubkey: RSA, ELG, DSA, ECDH, ECDSA, EDDSA

Cipher: IDEA, 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH,

 CAMELLIA128, CAMELLIA192, CAMELLIA256

Hash: SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224

Compression: Uncompressed, ZIP, ZLIB, BZIP2


The insecure hash algorithm SHA1 is still supported in version 2.2.27. SHA1 is

obsolete and you don’t want to use it to generate your signature.

2. Generate your GPG key pair:

Input generate GPG key pair

gpg --full-gen-key

125

Output generate GPG key pair (step 1: key type selection)

gpg (GnuPG) 2.2.27; Copyright (C) 2021 Free Software Foundation, Inc.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Please select what kind of key you want:

 (1) RSA and RSA (default)

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

 (14) Existing key from card

Your selection?

There are four options. The default is to use RSA to create the key pair. Good enough for us.

Output generate GPG key pair (step 2: key length selection)

RSA keys may be between 1024 and 4096 bits long.

What keysize do you want? (2048)

The default key length is 2048 bits. 1024 is obsolete and a longer 4096 RSA key will not provide

more security than 2048 RSA key. Use the default.

Output generate GPG key pair (step 3: validity selection)

Requested keysize is 2048 bits

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0)2y

2 years for the validity of your keys should be fine. You can always update the expiration time later

on.

Output generate GPG key pair (step 4: confirmation)

Key expires at Sun 16 Apr 2024 08:10:24 PM UTC

Is this correct? (y/N)y

Confirm if everything is correct.

126

Output generate GPG key pair (step 5: provide user details)

GnuPG needs to construct a user ID to identify your key.

Real name: Aleksandar Vidakovic

Email address: aleks@apache.org

Comment:

Provide your user details for the key. This is important because this information will be included in

our key. It’s one way of indicating who is owner of this key. The email address is a unique identifier

for a person. You can leave Comment blank.

Output generate GPG key pair (step 6: user ID selection)

You selected this USER-ID:

"Aleksandar Vidakovic <aleks@apache.org>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O

Select Okay.

After the selection of your user ID GPG will ask for a passphrase to protect your private key. Maybe

time to open your password manager and generate a secure one and save it in your vault. Once

you’ve confirmed your password GPG will start to generate your keys.


Don’t lose your private key password. You won’t be able to unlock and use your

private key without it.

Output generate GPG key pair (step 7: gpg key pair generation)

We need to generate a lot of random bytes. It is a good idea to perform

some other action (type on the keyboard, move the mouse, utilize the

disks) during the prime generation; this gives the random number

generator a better chance to gain enough entropy.

Generating the GPG keys will take a while.

127

Output generate GPG key pair (step 8: gpg key pair finished)

gpg: key 7890ABCD marked as ultimately trusted ①

gpg: directory '/home/aleks/.gnupg/openpgp-revocs.d' created

gpg: revocation certificate stored as '/home/aleks/.gnupg/openpgp-

revocs.d/ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD.rev' ②

public and secret key created and signed.

gpg: checking the trustdb

gpg: marginals needed: 3 completes needed: 1 trust model: PGP

gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u

gpg: next trustdb check due at 2024-04-16

pub rsa2048/7890ABCD 2022-04-16 [S] [expires: 2024-04-16] ③

Key fingerprint = ABCD EFGH IJKL MNOP QRST UVWX YZ12 3456 7890 ABCD ④

uid [ultimate] Aleksandar Vidakovic <aleks@apache.org> ⑤

sub rsa2048/4FGHIJ56 2022-04-16 [] [expires: 2024-04-16]

① GPG created a unique identifier in HEX format for your public key. When someone wants to

download your public key, they can refer to it either with your email address or this HEX value.

② GPG created a revocation certificate and its directory. You should never share your private key.

If your private key is compromised, you need to use your revocation certificate to revoke your

key.

③ The public key is 2048 bits using RSA algorithm and shows the expiration date of 16 Apr 2024.

The public key ID 7890ABCD matches the last 8 bits of key fingerprint.

④ The key fingerprint (ABCD EFGH IJKL MNOP QRST UVWX YZ12 3456 7890 ABCD) is a hash of your

public key.

⑤ Your name and your email address are shown with information about the subkey.

Now you can find that there are two files created under ~/.gnupg/private-keys-v1.d/ directory. These

two files are binary files with .key extension.

3. Export your public key:

gpg --armor --export aleks@apache.org > pubkey.asc

4. Export Your Private Key:

gpg --export-secret-keys --armor aleks@apache.org > privkey.asc

5. Protect Your Private Key and Revocation Certificate

Your private key should be kept in a safe place, like an encrypted flash drive. Treat it like your

house key. Only you can have it and don’t lose it. And you must remember your passphrase,

128

otherwise you can’t unlock your private key.

You should protect your revocation certificate. Anyone in possession of your revocation certificate,

could immediately revoke your public/private key pair and generate fake ones.


Please contact a PMC member to add your GPG public key in Fineract’s Subversion

repository. This is necessary to be able to validate published releases.

1. Upload your GPG key to a keyserver:

gpg --send-keys ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD

Before doing this, make sure that your default keyserver is hkp://keyserver.ubuntu.com/. You can

do this by changing the default keyserver in ~/.gnupg/dirmngr.conf:

keyserver hkp://keyserver.ubuntu.com/

Alternatively you can provide the keyserver with the send command:

gpg --keyserver 'hkp://keyserver.ubuntu.com:11371' --send-keys

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD

Another option to publish your key is to submit an armored public key directly at

keyserver.ubuntu.com/. You can create the necessary data with this command by providing the

email address that you used when you created your key pair:

gpg --armor --export aleks@apache.org

Output:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBF8iGq0BEADGRqeSsOoNDc1sV3L9sQ34KhmoQrACnMYGztx33TD98aWplul+

jm8uGtMmBus4DJJJap1bVQ1oMehw2mscmDHpfJjLNZ/q+vUqbExx1/CER7XvLryN

<--- snip --->

2nHBuBftxDRpDHQ+O5XYwSDSTDMmthPjx0vJGBH4K1kO8XK99e01A6/oYLV2SMKp

gXXeWjafxBmHT1cM8hoBZBYzgTu9nK5UnllWunfaHXiCBG4oQQ==

=85/F

-----END PGP PUBLIC KEY BLOCK-----

= Email

129

https://keyserver.ubuntu.com/

Official communication related to releases needs to be done with an Apache email address. The

Apache Foundation doesn’t provide any real email inboxes anymore and just relays emails to your

configured private account (GMail etc.).


At the moment we are supporting only GMail accounts. Please let us know if you have

other configuration recipes for other email providers.

GMail

You can configure your GMail account and add another profile to use the Apache relay server if you

need to send official messages. Please follow these instructions:

TBD.

See also: Send mail from another address without "on behalf of"

To be able to send emails via SMTP with your GMail account you probably need to create an app

password. Please follow these instructions:

1. Go to your Google Account.

2. Select Security.

3. Under "Signing in to Google," select App Passwords. You may need to sign in. If you don’t have this

option, it might be because:

4. 2-Step Verification is not set up for your account.

5. 2-Step Verification is only set up for security keys.

6. Your account is through work, school, or other organization.

7. You turned on Advanced Protection.

8. At the bottom, choose Select app and choose the app you’re using and then Select device and

choose the device you’re using and then Generate.

9. Follow the instructions to enter the App Password. The App Password is the 16-character code in

the yellow bar on your device.

10. Tap Done.

See also: Google Support: Sign in with App Passwords for more details.

Gradle

TBD

User Properties

There are a couple of properties that contain committer/release manager related secrets. Please add

the following properties to your personal global Gradle properties (you will find them at

130

https://gmail.googleblog.com/2009/07/send-mail-from-another-address-without.html
https://support.google.com/accounts/answer/185833?p=InvalidSecondFactor&visit_id=637856439524128323-869822459&rd=1

~/.gradle/gradle.properties in your home folder).

fineract.config.gnupg.keyName=ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCD①

fineract.config.gnupg.password=******

fineract.config.gnupg.publicKeyring=~/.gnupg/pubring.kbx②

fineract.config.gnupg.secretKeyring=~/.gnupg/secring.gpg

fineract.config.smtp.username=aleks@gmail.com ③

fineract.config.smtp.password=******

fineract.config.name=Aleksandar Vidakovic

fineract.config.email=aleks@apache.org

fineract.config.username=aleks ④

fineract.config.password=******

① Make sure you use the full GPG key name (you can list yours via gpg --list-secret-keys --keyid

-format=long)

② GnuPG has its own kbx format to store the public key ring. At the moment we are only supporting

this format

③ Currently we only have instructions for GMail

④ Apache committer credentials


Never add any personal secrets in the project gradle.properties. Double check that

you are not accidentally committing them to Git!

Release Plugin

Creating Apache Fineract releases was a very manual and tedious procedure before we created the

Gradle release plugin. It was easy - even with documentation - to forget a detail. Some ideas are

borrowed from the excellent JReleaser tool. Unfortunately at the moment we can’t use it for the full

release process. Being an Apache project we have certain requirements that are not fully covered by

JReleaser.

Release Plugin Configuration

 config {

 username = "${findProperty('fineract.config.username')}"

 password = "${findProperty('fineract.config.password')}"

 doc {

 url = 'git@github.com:apache/fineract-site.git'

 directory = "${System.getProperty("java.io.tmpdir")}/fineract-site"

 branch = "asf-site"

 }

 git {

 dir = "${projectDir.absolutePath}/.git"

131

https://jreleaser.org
https://jreleaser.org

 sections = [

 [

 section: "user",

 name: "name",

 value: "${findProperty('fineract.config.name')}",

],

 [

 section: "user",

 name: "email",

 value: "${findProperty('fineract.config.email')}",

],

 [

 section: "user",

 name: "signingkey",

 value: "${findProperty('fineract.config.gnupg.keyName')}",

],

 [

 section: "commit",

 name: "gpgsign",

 value: "true",

],

]

 }

 template {

 templateDir = "${projectDir}/buildSrc/src/main/resources"

 }

 gpg {

 keyName = "${findProperty('fineract.config.gnupg.keyName')}"

 publicKeyring = "${findProperty('fineract.config.gnupg.publicKeyring')}"

 secretKeyring = "${findProperty('fineract.config.gnupg.secretKeyring')}"

 password = "${findProperty('fineract.config.gnupg.password')}"

 }

 smtp {

 host = 'smtp.gmail.com'

 username = "${findProperty('fineract.config.smtp.username')}"

 password = "${findProperty('fineract.config.smtp.password')}"

 tls = true

 ssl = true

 }

 subversion {

 username = "${findProperty('fineract.config.username')}"

 password = "${findProperty('fineract.config.password')}"

 revision = 'HEAD'

 }

 jira {

 url = 'https://issues.apache.org/jira/rest/api/2/'

 username = "${findProperty('fineract.config.username')}"

 password = "${findProperty('fineract.config.password')}"

132

 }

 confluence {

 url = 'https://cwiki.apache.org/confluence/rest/api/'

 username = "${findProperty('fineract.config.username')}"

 password = "${findProperty('fineract.config.password')}"

 }

 }

Release Process

TODO:

• create "Jira anchor ticket" with all issues linked that are going into this release.

• maintenance: continuously update the "Jira anchor ticket" to make sure we catch all ticket changes

• maintenance: list tickets that have discrepancies, e. g. tickets still open while associated PR merged,

ticket on wrong version (i. e. associated PR already merged before with another release).

TBD

 Consider the Gradle plugin commands an experimental feature!

133

Fineract Release Process

Step 0: Select release manager

Step 1: Send heads-up email to dev mailing list

Step 2: Clean up JIRA

Step 3: Create a release branch

Step 4: Freeze JIRA version

Continue with development on 'develop' branch

Step 5: Create release tag

Step 6: Create a distr ibution

Step 7: Sign the distr ibution ar t i facts

Step 8: Upload distr ibution ar t i facts to staging environment

Step 9: Verify distr ibution in staging environment

Step 10: Star t voting on the dev mail ing l ist

Step 11: Conclude the vote and announce results

Step 12: Upload distr ibution ar t i facts to release environment

Step 13: Close release branch and merge to 'develop'

Step 14: Update website (not yet automated)

Step 15: Send email to announcement mail ing l ist

1-2 weeks

72 hours or 3 yes votes?

yes

Figure 5. Release Process Diagram

134

Step 1: Heads-Up Email

Description

The RM should, if one doesn’t already exist, first create a new release umbrella issue in JIRA. This issue

is dedicated to tracking (a summary of) any discussion related to the planned new release. An example

of such an issue is FINERACT-873 - Release Apache Fineract v1.4.0 RESOLVED.

The RM then creates a list of resolved issues & features through an initial check in JIRA for already

resolved issues for the release, and then setup a timeline for release branch point. The time for the day

the issue list is created to the release branch point must be at least two weeks in order to give the

community a chance to prioritize and commit any last minute features and issues they would like to

see in the upcoming release.

The RM must then send the pointer to the umbrella issue along with the tentative timeline for branch

point to the developer lists. Any work identified as release related that needs to be completed should

be added as a sub tasks of the umbrella issue to allow all developers and users to see the overall

release progress in one place. The umbrella issue shall also link to any issues still requiring

clarification whether or not they will make it into the release.

The RM should then inform users when the git branch is planned to be created, by sending an email

based on this template:

135

[FINERACT] [PROPOSAL] ὎� New release ${project['fineract.release.version']}

Hello everyone,

... based on our "How to Release Apache Fineract" process documented at

https://cwiki.apache.org/confluence/x/DRwIB:

I will create a ${project['fineract.release.version']} branch off develop in our git

repository at https://github.com/apache/fineract on ${project['fineract.release.date']}.

The release tracking umbrella issue for tracking all activity in JIRA is FINERACT-

${project['fineract.release.issue']!'0000'}

(https://issues.apache.org/jira/browse/FINERACT-

${project['fineract.release.issue']!'0000'}) for this Fineract

${project['fineract.release.version']}.

If you have any work in progress that you would like to see included in this release,

please add "blocking" links to the release JIRA issue.

I am the release manager for this release.

Cheers,

${project['fineract.config.name']}

Ἰ� Powered by Fineract Release Plugin Ἰ�

Gradle Task

Command

% ./gradlew fineractReleaseStep1 -Pfineract.release.issue=1234

-Pfineract.release.date="Monday, April 25, 2022" -Pfineract.release.version=1.11.0

Step 2: Clean Up JIRA

Description

Before a release is done, make sure that any issues that are fixed have their fix version setup correctly.

project = FINERACT and resolution = fixed and fixVersion is empty

136

Move all unresolved JIRA issues which have this release as Fix Version to the next release

project = FINERACT and fixVersion = 1.11.0 and status not in (Resolved, Done, Accepted,

Closed)

You can also run the following query to make sure that the issues fixed for the to-be-released version

look accurate:

project = FINERACT and fixVersion = 1.11.0

Finally, check out the output of the JIRA release note tool to see which tickets are included in the

release, in order to do a sanity check.

Gradle Task

Command

% ./gradlew fineractReleaseStep2 -Pfineract.release.version=1.11.0

 This task is not yet automated!

Step 3: Create Release Branch

Description

Communicate with the community. You do not need to start a new email thread on the developer

mailing list to notify that you are about to branch, just do it ca. 2 weeks after the initial email, or later,

based on the discussion on the initial email.

You do not need to ask committers to hold off any commits until you have branched finished, as it’s

always possible to fast-forward the branch to latest develop, or cherry-pick last minute changes to it.

People should be able to continue working on the develop branch on bug fixes and great new features

for the next release while the release process for the current release is being worked through.

1. Clone fresh repository copy

% git clone git@github.com:apache/fineract.git

% cd fineract

2. Check that current HEAD points to commit on which you want to base new release branch.

Checkout a particular earlier commit if not.

137

% git log ①

① Check current branch history. HEAD should point to commit that you want to be base for your

release branch

3. Create a new release branch with name "$Version"

% git checkout -b 1.11.0

4. Push new branch to Apache Fineract repository

% git push origin 1.11.0

5. Add new release notes in Release Folders. The change list can be swiped from the JIRA release note

tool (use the "text" format for the change log). See JIRA Cleanup above to ensure that the release

notes generated by this tool are what you are expecting.

6. Send en email announcing the new release branch on the earlier email thread

[FINERACT] [ANNOUNCE] ὐ� ${project['fineract.release.version']} release branch

Hello everyone,

... as previously announced, I've just created the release branch for our upcoming

${project['fineract.release.version']} release.

You can continue working and merging PRs to the develop branch for future releases, as

always.

The DRAFT release notes are on

https://cwiki.apache.org/confluence/display/FINERACT/${project['fineract.release.versi

on']}+-+Apache+Fineract. Does anyone see anything missing?

Does anyone have any last minutes changes they would like to see cherry-picked to

branch ${project['fineract.release.version']}, or are we good go and actually cut the

release based on this branch as it is?

I'll initiate the final stage of actually creating the release on

${project['fineract.release.date']} if nobody objects.

Cheers,

${project['fineract.config.name']}

138

Gradle Task

Command

% ./gradlew fineractReleaseStep3 -Pfineract.release.date="Monday, May 10, 2022"

-Pfineract.release.version=1.11.0

Step 4: Freeze JIRA

Description

You first need to close the release in JIRA so that the about to be released version cannot be used as

"fixVersion" for new bugs anymore. Go to JIRA "Administer project" page and follow "Versions" in left

menu. Table with list of all releases should appear, click on additional menu on the right of your

release and choose "Release" option. Submit release date and you’re done.

Gradle Task

Command

% ./gradlew fineractReleaseStep4

 This task is not yet automated!

Step 5: Create Release Tag

Description

Next, you create a git tag from the HEAD of the release’s git branch.

% git checkout 1.11.0

% ./gradlew clean integrationTests ①

% git tag -a 1.11.0 -m "Fineract 1.11.0 release"

% git push origin 1.11.0

① Run additonally manual tests with the community app.

 It is important to create so called annotated tags (vs. lightweight) for releases.

Gradle Task

Command

% ./gradlew fineractReleaseStep5 -Pfineract.release.version=1.11.0

139

Step 6: Create Distribution

Description

Create source and binary artifacts. Make sure to do some sanity checks. The tar and the release branch

should match.

% cd /fineract-release-preparations ①

% tar -xvf apache-fineract-1.11.0-src.tar.gz

% git clone <a href="https://git-wip-us.apache.org/repos/asf/fineract.git"

class="bare">git-wip-us.apache.org/repos/asf/fineract.git

% cd fineract/

% git checkout tags/1.11.0

% cd ..

% diff -r fineract apache-fineract-1.11.0-src

① Do a fresh clone of the tag.

Make sure code compiles and tests pass on the uncompressed source.

% cd apache-fineract-1.11.0-src/fineract-provider ①

% gradlew clean integrationTest ②

% gradlew clean build ③

% gradlew rat ④

① Make sure prerequisites are met before running these commands.

② For running integration tests

③ For building deploy able war

④ For RAT checks

Gradle Task

Command

% ./gradlew fineractReleaseStep6

Step 7: Sign Distribution

Description

All release artifacts must be signed. In order to sign a release you will need a PGP key. You should get

your key signed by a few other people. You will also need to receive their keys from a public key

server. See the Apache release signing page for more details. Please follow the steps defined in Release

Sign.

140

% gpg --armor --output apache-fineract-1.11.0-src.tar.gz.asc --detach-sig apache-

fineract-1.11.0-src.tar.gz

% gpg --print-md MD5 apache-fineract-1.11.0-src.tar.gz > apache-fineract-1.11.0-

src.tar.gz.md5

% gpg --print-md SHA512 apache-fineract-1.11.0-src.tar.gz > apache-fineract-1.11.0-

src.tar.gz.sha512

% gpg --armor --output apache-fineract-1.11.0--binary.tar.gz.asc --detach-sig apache-

fineract-1.11.0-binary.tar.gz

% gpg --print-md MD5 apache-fineract-1.11.0-binary.tar.gz > apache-fineract-1.11.0-

binary.tar.gz.md5

% gpg --print-md SHA512 apache-fineract-1.11.0-binary.tar.gz > apache-fineract-1.11.0-

binary.tar.gz.sha512

Gradle Task

Command

% ./gradlew fineractReleaseStep7

Step 8: Upload Distribution Staging

Description

Finally create a directory with release name (1.11.0 in this example) in dist.apache.org/repos/dist/dev/

fineract and add the following files in this new directory:

• apache-fineract-1.11.0-binary.tar.gz.sha

• apache-fineract-1.11.0-binary.tar.gz

• apache-fineract-1.11.0-binary.tar.gz.asc

• apache-fineract-1.11.0-binary.tar.gz.md5

• apache-fineract-1.11.0-src.tar.gz.sha

• apache-fineract-1.11.0-src.tar.gz

• apache-fineract-1.11.0-src.tar.gz.asc

• apache-fineract-1.11.0-src.tar.gz.md5

Upload binary and source archives to ASF’s distribution dev (staging) area:

141

https://dist.apache.org/repos/dist/dev/fineract
https://dist.apache.org/repos/dist/dev/fineract

% svn co <a href="https://dist.apache.org/repos/dist/dev/fineract/"

class="bare">dist.apache.org/repos/dist/dev/fineract/ fineract-dist-dev

% mkdir fineract-dist-dev/1.11.0

% cp fineract/build/distributions/* fineract-dist-dev/1.11.0/

% svn commit


You will need your ASF Committer credentials to be able to access the Subversion host

dist.apache.org via.

Gradle Task

Command

% ./gradlew fineractReleaseStep8 -Pfineract.release.version=1.11.0

Step 9: Verify Distribution Staging

Description

Following are the typical things we need to verify before voting on a release candidate. And the release

manager should verify them too before calling out a vote.

Make sure release artifacts are hosted at dist.apache.org/repos/dist/dev/fineract

• Release candidates should be in format apache-fineract-1.11.0-binary.tar.gz

• Verify signatures and hashes. You may have to import the public key of the release manager to

verify the signatures. (gpg --recv-key <key id>)

• Git tag matches the released bits (diff -rf)

• Can compile successfully from source

• Verify DISCLAIMER, NOTICE and LICENSE (year etc)

• All files have correct headers (Rat check should be clean - gradlew rat)

• No jar files in the source artifacts

• Integration tests should work

Gradle Task

Command

% ./gradlew fineractReleaseStep9 -Pfineract.release.version=1.11.0

142

https://dist.apache.org
https://dist.apache.org/repos/dist/dev/fineract

 This task is not yet automated!

Step 10: Start Vote

Description

Voting has to be done on dev@fineract.apache.org. You can close the vote after voting period expires

(72 hours) and you accumulate sufficient votes (minimum 3 x +1 PMC votes).

[FINERACT] [VOTE] Ὗ�️ ${project['fineract.release.version']} for release

Hello everyone,

... we have created Apache Fineract ${project['fineract.release.version']} release, with

the artifacts below up for a vote.

It fixes the following issues:

https://cwiki.apache.org/confluence/display/FINERACT/${project['fineract.release.version'

]}+-+Apache+Fineract

Source & Binary files :

https://dist.apache.org/repos/dist/dev/fineract/${project['fineract.release.version']}/

Tag to be voted on (rc#):

https://gitbox.apache.org/repos/asf?p=fineract.git;a=commit;h=refs/heads/${project['finer

act.release.version']}

Fineract's KEYS containing the PGP key we used to sign the release:

https://dist.apache.org/repos/dist/dev/fineract/KEYS

Note that this release contains source and binary artifacts.

This vote will be open for 72 hours:

[] +1 approve

[] +0 no opinion

[] -1 disapprove (and reason why)

Cheers,

${project['fineract.config.name']}

Gradle Task

143

mailto:dev@fineract.apache.org

Command

% ./gradlew fineractReleaseStep10 -Pfineract.release.version=1.11.0

Step 11: Finish Vote

Description

Upon receiving 3 x +1 from the PMC, or after 72 hours (whichever one comes first), reply to the voting

thread and add the prefix "[RESULT]" to the subject line with the results, as follows:

[FINERACT] [VOTE] [RESULT] ᾟ�️ ${project['fineract.release.version']} for release

<#if (project['fineract.vote'].approve.binding?size +

project['fineract.vote'].approve.nonBinding?size >

project['fineract.vote'].disapprove.binding?size +

project['fineract.vote'].disapprove.nonBinding?size)>

Voting is now closed and has passed with the following tally,

Binding +1s: ${project['fineract.vote'].approve.binding?size}

Non binding +1s: ${project['fineract.vote'].approve.nonBinding?size}

<#else>

Voting is now closed and has not passed with the following tally,

Binding +1s: ${project['fineract.vote'].approve.binding?size}

Non binding +1s: ${project['fineract.vote'].approve.nonBinding?size}

Binding -1s: ${project['fineract.vote'].disapprove.binding?size}

Non binding -1s: ${project['fineract.vote'].disapprove.nonBinding?size}

</#if>

Here are the detailed results:

<#list project['fineract.vote'].approve.binding>

Binding +1s:

 <#items as item>

- ${item.name} (${item.email})

 </#items>

</#list>

<#list project['fineract.vote'].approve.nonBinding>

Non binding +1s:

 <#items as item>

- ${item.name} (${item.email})

 </#items>

144

</#list>

<#list project['fineract.vote'].disapprove.binding>

Binding -1s:

 <#items as item>

- ${item.name} (${item.email})

 </#items>

</#list>

<#list project['fineract.vote'].disapprove.nonBinding>

Non binding -1s:

 <#items as item>

- ${item.name} (${item.email})

 </#items>

</#list>

<#list project['fineract.vote'].noOpinion.binding>

Binding +0s:

 <#items as item>

- ${item.name} (${item.email})

 </#items>

</#list>

<#list project['fineract.vote'].noOpinion.nonBinding>

Non binding +0s:

 <#items as item>

- ${item.name} (${item.email})

 </#items>

</#list>

<#if (project['fineract.vote'].approve.binding?size +

project['fineract.vote'].approve.nonBinding?size >

project['fineract.vote'].disapprove.binding?size +

project['fineract.vote'].disapprove.nonBinding?size)>

Thanks to everyone who voted! I'll now continue with the rest of the release process.

<#else>

Thanks to everyone who voted! Looks like we have to repeat the vote.

</#if>

${project['fineract.config.name']}

Gradle Task

145

Command

% ./gradlew fineractReleaseStep11 -Pfineract.release.version=1.11.0

Step 12: Upload Distribution Release

Description

In order to release you have to checkout release repository located on dist.apache.org/repos/dist/

release/fineract and add release artifacts there.

% svn co <a href="https://dist.apache.org/repos/dist/release/fineract"

class="bare">dist.apache.org/repos/dist/release/fineract fineract-release

% mkdir fineract-release/1.11.0/

% cp fineract-dist-dev/1.11.0/* fineract-release/1.11.0/

% svn add fineract-release/1.11.0/

% svn commit -m "Fineract Release 1.11.0" fineract-release/1.11.0/

You will now get an automated email from the Apache Reporter Service (no-

reply@reporter.apache.org), subject "Please add your release data for 'fineract'" to add the release data

(version and date) to the database on reporter.apache.org/addrelease.html?fineract (requires PMC

membership).

Gradle Task

Command

% ./gradlew fineractReleaseStep12 -Pfineract.release.version=1.11.0

Step 13: Close Release Branch

Description

As discussed in FINERACT-1154, now that everything is final, please do the following to remove the

release branch (and just keep the tag), and make sure that everything on the release tag is merged to

develop and that e.g. git describe works:

146

https://dist.apache.org/repos/dist/release/fineract
https://dist.apache.org/repos/dist/release/fineract
mailto:no-reply@reporter.apache.org
mailto:no-reply@reporter.apache.org
https://reporter.apache.org/addrelease.html?fineract
https://issues.apache.org/jira/browse/FINERACT-1154

% git checkout develop

% git branch -D 1.11.0

% git push origin :1.11.0

% git checkout develop

% git checkout -b merge-1.11.0

% git merge -s recursive -Xignore-all-space 1.11.0 ①

% git commit

% git push $USER

% hub pull-request

① Manually resolve merge conflicts, if any

Gradle Task

Command

% ./gradlew fineractReleaseStep13 -Pfineract.release.version=1.11.0

 This task is not yet automated!

Step 14: Update website

Description

Finally update the fineract.apache.org website with the latest release details. The website’s HTML

source code is available at github.com/apache/fineract-site.

 This step is not yet updated. We are working on a static site generator setup.

Gradle Task

Command

% ./gradlew fineractReleaseStep14 ①

① Currently doing nothing. Will trigger in the future the static site generator and publish on Github.

 This task is not yet automated!

Step 15: Announcement Email

Description

Send an email to announce@apache.org (sender address must be @apache.org):

147

https://fineract.apache.org
https://github.com/apache/fineract-site

[ANNOUNCE] Apache Fineract ${project['fineract.release.version']} Release

The Apache Fineract project is pleased to announce

the release of Apache Fineract ${project['fineract.release.version']}.

The release is available for download from

https://fineract.apache.org/#downloads

Fineract provides a reliable, robust, and affordable solution for entrepreneurs,

financial institutions, and service providers to offer financial services to the

world’s 2 billion underbanked and unbanked. Fineract is aimed at innovative mobile

and cloud-based solutions, and enables digital transaction accounts for all.

This release addressed ${project['fineract.release.issues']?size} issues.

Readme:

https://github.com/apache/fineract/blob/${project['fineract.release.version']}/README.md

Release page:

https://cwiki.apache.org/confluence/display/FINERACT/${project['fineract.release.version'

]}+-+Apache+Fineract

List of fixed issues:

https://issues.apache.org/jira/secure/ReleaseNote.jspa?version=${project['fineract.releas

e.versionId']}&styleName=Html&projectId=${project['fineract.release.projectId']}

For more information on Apache Fineract please visit

project home page: https://fineract.apache.org

The Apache Fineract Team

Gradle Task

Command

% ./gradlew fineractReleaseStep15 -Pfineract.release.version=1.11.0

Maintenance Release Process


This is a first attempt to introduce maintenance releases. Some details might change

as soon as we get more experience with the process and feedback from the

community. The numbers here are still more or less arbitrary, and we’ll adapt as

necessary.

148

Rules

• hotfix releases are reserved for critical (BLOCKER) bugs and security issues. Probably we’ll have

some kind of voting process in place, e. g. "minimum 3 x +1 votes from PMC members"

• we will support (for now to start) two minor versions back counting from the last release; this

would mean that once 1.8.0 is out we would support 1.8.x and 1.7.x, but not 1.6.x and older; this

rule is tentative, we’ll see then what we do in the future when we have more feedback.

• guaranteed backward compatibility with the last minor release; i. e. "1.6.1" is a drop-in replacement

for "1.6.0"

• NO new features, tables, data, REST endpoints

• NO major (or "minor" framework upgrades); i. e. if we used Spring Boot "2.6.1" in version "1.6.0" of

Fineract we can upgrade dependencies to "2.6.10" (unless it breaks something of course), but not to

"2.7.2" of Spring Boot


The rest of the release process is the same as for normal releases. In the future we

might have smaller time windows for reviews.

Publish Release Artifacts


More on releases at the ASF see www.apache.org/legal/release-policy.html#distribute-

raw-artifact

Requirements

You need to have your GPG keypairs properly set up. The JAR release artifacts (currently only fineract-

client) are signed with a Gradle plugin just before being uploaded to the Maven repository. Please

make sure that the following properties are set in your private gradle.properties file in your home

folder:

signing.keyId=7890ABCD

signing.password=*****

signing.secretKeyRingFile=~/.gnupg/secring.gpg

This is quite similiar to the Fineract release plugin properties for GPG. In one of the next release we’ll

merge these two setups to avoid this duplicated configuration.

Maven Repository

We are using the ASF’s official Nexus Maven repository to publish our snapshot and release artifacts.

 Find more information at infra.apache.org/publishing-maven-artifacts.html

149

https://www.apache.org/legal/release-policy.html#distribute-raw-artifact
https://www.apache.org/legal/release-policy.html#distribute-raw-artifact
https://repository.apache.org
https://infra.apache.org/publishing-maven-artifacts.html

NPM Registry

For convenience we will be using Github Packages to publish Fineract’s Typescript API client.

TBD

Docker Hub

TBD

150

Fineract SDKs

TBD

Generate Apache Fineract API Client

Apache Fineract supports client code generation using OpenAPI Generator. It uses OpenAPI

Specification Version 3.0.3.

Fineract SDK Java API Client

The fineract-client.jar will eventually be available on Maven Central (watch FINERACT-1102). Until it

is, you can quite easily build the latest and greatest version locally from source, see below.

The FineractClient is the entry point to the Fineract SDK Java API Client. Calls is a convenient and

recommended utility to simplify the use of the retrofit2.Call type which all API operations return.

This permits you to use the API like the FineractClientDemo illustrates:

import org.apache.fineract.client.util.FineractClient;

import static org.apache.fineract.client.util.Calls.ok;

 FineractClient fineract = FineractClient.builder().baseURL(

"https://demo.fineract.dev/fineract-provider/api/v1/").tenant("default")

 .basicAuth("mifos", "password").build();

 List<RetrieveOneResponse> staff = Calls.ok(fineract.staff.retrieveAll16(1L, true,

false, "ACTIVE"));

 String name = staff.get(0).getDisplayName();

 log.info("Display name: {}", name);

Generate API Client

The API client is built as part of the standard overall Fineract Gradle build. The client JAR can be found

in fineract-client/build/libs as fineract-client.jar.

If you need to save time to incrementally work on making small changes to Swagger annotations in an

IDE, you can execute e.g. the following line in root directory of the project to exclude non-require

Gradle tasks:

./gradlew -x compileJava -x compileTest -x spotlessJava -x enhance resolve

prepareInputYaml :fineract-client:buildJavaSdk

151

https://openapi-generator.tech
https://swagger.io/specification/
https://swagger.io/specification/
https://issues.apache.org/jira/browse/FINERACT-1102
https://github.com/search?q=repo%3Aapache%2Ffineract+path%3AFineractClient.java&type=code
https://github.com/search?l=&q=repo%3Aapache%2Ffineract+path%3ACalls.java&type=code
https://square.github.io/retrofit/2.x/retrofit/retrofit2/Call.html
https://github.com/search?l=&q=repo%3Aapache%2Ffineract+path%3AFineractClientDemo.java&type=code

Validate OpenAPI Spec File

The resolve task in build.gradle file will generate the OpenAPI Spec File for the project. To make sure

Swagger Codegen generates a correct library, it is important for the OpenAPI Spec file to be valid.

Validation is done automatically by the OpenAPI code generator Gradle plugin. If you still have

problems during code generation please use Swagger OpenAPI Validator to validate the spec file.

152

https://github.com/apache/fineract/blob/develop/fineract-provider/build.gradle#L80
https://validator.swagger.io/

Frequently Asked Questions

See Fineract FAQ wiki page.

153

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=91554327

Glossary

TBD

154

Index

155

Appendix A: Fineract Application Properties

TBD

Tenant Database Properties

Table 3. Tenant Database Properties

Name Env Variable Default Value Description

fineract.tenant.host FINERACT_DEFAULT_TE

NANTDB_HOSTNAME

localhost This property sets the

hostname of the default

tenant database.

fineract.tenant.port FINERACT_DEFAULT_TE

NANTDB_PORT

3306 This property sets the

port of the default

tenant database.

fineract.tenant.usernam

e

FINERACT_DEFAULT_TE

NANTDB_UID

root This property sets the

username of the default

tenant database.

fineract.tenant.passwor

d

FINERACT_DEFAULT_TE

NANTDB_PWD

mysql This property sets the

password of the default

tenant database.

fineract.tenant.paramet

ers

FINERACT_DEFAULT_TE

NANTDB_CONN_PARAM

S

This property sets the

connection parameters

of the default tenant

database. eg. whether

ssl is enabled or not

fineract.tenant.timezone FINERACT_DEFAULT_TE

NANTDB_TIMEZONE

Asia/Kolkata This property sets the

timezone of the default

tenant

fineract.tenant.identifier FINERACT_DEFAULT_TE

NANTDB_IDENTIFIER

default This property sets the

unique identifier for the

tenant within fineract

fineract.tenant.name FINERACT_DEFAULT_TE

NANTDB_NAME

fineract_default This property sets the

database name of the

default tenant

fineract.tenant.descripti

on

FINERACT_DEFAULT_TE

NANTDB_DESCRIPTION

Default Demo Tenant This property sets the

description of the

default tenant

156

Name Env Variable Default Value Description

fineract.tenant.master-

password

FINERACT_DEFAULT_TE

NANTDB_MASTER_PASS

WORD

fineract The password used to

encrypt sensitive tenant

data within the database

fineract.tenant.encrypti

on

FINERACT_DEFAULT_TE

NANTDB_ENCRYPTION

AES/CBC/PKCS5Padding This property sets the

symmetric encryption

algorithm used to

encrypt sensitive tenant

data within the database

e.g tenant database

password

spring.liquibase.enabled FINERACT_LIQUIBASE_

ENABLED

true If set to true, liquibase

will be enabled and the

instance running this

configuration will run

migrations

fineract.tenant.read-

only-name

FINERACT_DEFAULT_TE

NANTDB_RO_NAME

For read only

configuration, set this to

the name of the read

only tenant database

fineract.tenant.read-

only-host

FINERACT_DEFAULT_TE

NANTDB_RO_HOSTNAM

E

For read only

configuration, set this to

the hostname of the

read only tenant

database

fineract.tenant.read-

only-port

FINERACT_DEFAULT_TE

NANTDB_RO_PORT

For read only

configuration, set this to

the port of the read only

tenant database

fineract.tenant.read-

only-username

FINERACT_DEFAULT_TE

NANTDB_RO_UID

For read only

configuration, set this to

the username of the

read only tenant

database

fineract.tenant.read-

only-password

FINERACT_DEFAULT_TE

NANTDB_RO_PWD

For read only

configuration, set this to

the password of the

read only tenant

database

157

Name Env Variable Default Value Description

fineract.tenant.read-

only-parameters

FINERACT_DEFAULT_TE

NANTDB_RO_CONN_PA

RAMS

For read only

configuration, set this to

the connection

parameters of the read

only tenant database

Hikari Connection Pool Properties

Table 4. Hikari Connection Pool Properties

Name Env Variable Default Value Description

spring.datasource.hikari

.driverClassName

FINERACT_HIKARI_DRI

VER_SOURCE_CLASS_NA

ME

org.mariadb.jdbc.Driver The correct driver name

for the database that

will be used with

fineract.

spring.datasource.hikari

.jdbcUrl

FINERACT_HIKARI_JDBC

_URL

jdbc:mariadb://localhost

:3306/fineract_tenants

The database

connection string for the

database with tenant

information that will be

used with fineract.

spring.datasource.hikari

.username

FINERACT_HIKARI_USE

RNAME

root The username for the

database with tenant

information that will be

used with fineract

spring.datasource.hikari

.password

FINERACT_HIKARI_PAS

SWORD

mysql The password for the

database with tenant

information that will be

used with fineract

spring.datasource.hikari

.minimumIdle

FINERACT_HIKARI_MIN

IMUM_IDLE

3 The minimum number

of connections in hakari

pool that will be

maintained when the

system is idle

spring.datasource.hikari

.maximumPoolSize

FINERACT_HIKARI_MAX

IMUM_POOL_SIZE

10 The maximum number

of connections that

hikari can create in the

pool.

158

Name Env Variable Default Value Description

spring.datasource.hikari

.idleTimeout

FINERACT_HIKARI_IDLE

_TIMEOUT

60000 The maximum time in

milliseconds that a

connection is allowed to

sit idle in the pool.

spring.datasource.hikari

.connectionTimeout

FINERACT_HIKARI_CON

NECTION_TIMEOUT

20000 The maximum time in

milliseconds that hikari

will wait for a

connection to be

established.

spring.datasource.hikari

.connectionTestquery

FINERACT_HIKARI_TES

T_QUERY

SELECT 1 The query that will be

used to test the database

connection.

spring.datasource.hikari

.autoCommit

FINERACT_HIKARI_AUT

O_COMMIT

true If set to true, the

connections in the pool

will be in auto-commit

mode.

spring.datasource.hikari

.dataSourceProperties['c

achePrepStmts']

FINERACT_HIKARI_DS_P

ROPERTIES_CACHE_PRE

P_STMTS

true If set to true, hikari

caches compiled SQL

statements to avoid the

overhead of re-parsing

and re-compiling SQL

queries.

spring.datasource.hikari

.dataSourceProperties['p

repStmtCacheSize']

FINERACT_HIKARI_DS_P

ROPERTIES_PREP_STMT

_CACHE_SIZE

250 The maximum number

of prepared statements

that hikari can cache.

spring.datasource.hikari

.dataSourceProperties['p

repStmtCacheSqlLimit']

FINERACT_HIKARI_DS_P

ROPERTIES_PREP_STMT

_CACHE_SQL_LIMIT

2048 This property sets the

upper limit for the size

of individual SQL

queries that can be

stored in the cache. If a

SQL query exceeds this

limit in terms of

character length, it will

not be cached, even if

caching is enabled.

159

Name Env Variable Default Value Description

spring.datasource.hikari

.dataSourceProperties['u

seServerPrepStmts']

FINERACT_HIKARI_DS_P

ROPERTIES_USE_SERVE

R_PREP_STMTS

true This property

determines if the

connection should

leverage server-side

prepared statements

rather than client-side

ones.

spring.datasource.hikari

.dataSourceProperties['u

seLocalSessionState']

FINERACT_HIKARI_DS_P

ROPERTIES_USE_LOCAL

_SESSION_STATE

true This property allows the

connection pool to

locally track changes to

session-specific

properties (like

character sets or time

zones) rather than

sending these queries to

the database repeatedly.

spring.datasource.hikari

.dataSourceProperties['r

ewriteBatchedStatement

s']

FINERACT_HIKARI_DS_P

ROPERTIES_REWRITE_B

ATCHED_STATEMENTS

true This property, when set

to true, allows the JDBC

driver to rewrite

batched SQL statements

into a more efficient

single query format

before sending them to

the database.

spring.datasource.hikari

.dataSourceProperties['c

acheResultSetMetadata']

FINERACT_HIKARI_DS_P

ROPERTIES_CACHE_RES

ULT_SET_METADATA

true This property, when set

to true, enables the

caching of metadata for

ResultSet objects. This

metadata includes

details such as column

names, types, and other

relevant schema

information.

160

Name Env Variable Default Value Description

spring.datasource.hikari

.dataSourceProperties['c

acheServerConfiguratio

n']

FINERACT_HIKARI_DS_P

ROPERTIES_CACHE_SER

VER_CONFIGURATION

true When set to true, this

property allows the

JDBC driver to cache the

server configuration

settings, which include

properties such as

session state, character

sets, and other

configuration details

relevant to the database

server.

spring.datasource.hikari

.dataSourceProperties['e

lideSetAutoCommits']

FINERACT_HIKARI_DS_P

ROPERTIES_ELIDE_SET_

AUTO_COMMITS

true When set to true, this

property prevents the

JDBC driver from

issuing a SET

autocommit command

on the database

connection during its

initialization.

spring.datasource.hikari

.dataSourceProperties['

maintainTimeStats']

FINERACT_HIKARI_DS_P

ROPERTIES_MAINTAIN_

TIME_STATS

false When set to true, this

property enables

HikariCP to track and

maintain statistics

regarding various

timing metrics related to

connection pool

operations, such as

connection acquisition

times.

spring.datasource.hikari

.dataSourceProperties['l

ogSlowQueries']

FINERACT_HIKARI_DS_P

ROPERTIES_LOG_SLOW

_QUERIES

true When set to true, this

property enables

HikariCP to log SQL

queries that exceed a

specified execution time

threshold, allowing

developers and

administrators to

identify and analyze

performance issues

related to slow-running

queries.

161

Name Env Variable Default Value Description

spring.datasource.hikari

.dataSourceProperties['d

umpQueriesOnExceptio

n']

FINERACT_HIKARI_DS_P

ROPERTIES_DUMP_QUE

RIES_IN_EXCEPTION

true When set to true, this

property instructs

HikariCP to log the SQL

statements that caused

exceptions during

execution. This includes

capturing the query text

and any associated

parameters.

SSL Properties

Table 5. SSL Properties

Name Env Variable Default Value Description

server.ssl.enabled FINERACT_SERVER_SSL_

ENABLED

true When set to true, SSL

(Secure Sockets Layer)

or TLS (Transport Layer

Security) will be enabled

for the server.

server.ssl.protocol FINERACT_SERVER_SSL_

PROTOCOL

TLS This property allows

you to define specific

SSL/TLS protocol

version the server will

use when establishing

secure connections.

Common protocols

include TLSv1.2,

TLSv1.3, etc.

server.ssl.ciphers FINERACT_SERVER_SSL_

CIPHERS

TLS_RSA_WITH_AES_12

8_CBC_SHA256

This property allows

you to control the cipher

suites that fineract will

accept for secure

connections

server.ssl.enabled-

protocols

FINERACT_SERVER_SSL_

PROTOCOLS

TLSv1.2 This property allows

you to define a list of

SSL/TLS protocol

versions that the server

will support when

establishing secure

connections

162

Name Env Variable Default Value Description

server.ssl.key-store FINERACT_SERVER_SSL_

KEY_STORE

classpath:keystore.jks The property is used to

specify the location of

the SSL key store file

that contains the

server’s private key and

the associated certificate

server.ssl.key-store-

password

FINERACT_SERVER_SSL_

KEY_STORE_PASSWORD

openmf The property defines the

password for the

keystore specified under

property server.ssl.key-

store

Authentication Properties

Table 6. Authentication Properties

Name Env Variable Default Value Description

fineract.security.basicau

th.enabled

FINERACT_SECURITY_B

ASICAUTH_ENABLED

true When set to true, the

supported

authentication method

will be basic

authentication.

fineract.security.oauth.e

nabled

FINERACT_SECURITY_O

AUTH_ENABLED

false When set to true, the

supported

authentication method

will be OAuth.

fineract.security.2fa.ena

bled

FINERACT_SECURITY_2F

A_ENABLED

false Set the value to true

enable two-factor

authentication. For this

to work as expected,

ensure that you have set

the correct email/sms

configuration

spring.security.oauth2.r

esourceserver.jwt.issuer

-uri

FINERACT_SERVER_OAU

TH_RESOURCE_URL

localhost:9000/auth/

realms/fineract

If OAuth is enabled and

a custom resouce server

(different from what is

provided) is required,

set the issuer-uri here.

163

http://localhost:9000/auth/realms/fineract
http://localhost:9000/auth/realms/fineract

Tomcat Properties

Table 7. Tomcat Properties

Name Env Variable Default Value Description

server.tomcat.accept-

count

FINERACT_SERVER_TO

MCAT_ACCEPT_COUNT

100 The property specifies

the maximum number

of concurrent

connection requests that

embedded Tomcat can

queue. If this limit is

reached, incoming

connection requests will

be rejected.

server.tomcat.accesslog.

enabled

FINERACT_SERVER_TO

MCAT_ACCESSLOG_ENA

BLED

false If set to true, tomcat will

log access requests to

file

server.tomcat.max-

connections

FINERACT_SERVER_TO

MCAT_MAX_CONNECTI

ONS

8192 Sets the maximum

number of simultaneous

connections Tomcat can

handle.

server.tomcat.max-http-

form-post-size

FINERACT_SERVER_TO

MCAT_MAX_HTTP_FOR

M_POST_SIZE

2MB The property in sets the

maximum size of HTTP

POST requests that

Tomcat can handle

server.tomcat.max-keep-

alive-requests

FINERACT_SERVER_TO

MCAT_MAX_KEEP_ALIV

E_REQUESTS

100 The property specifies

the maximum number

of HTTP requests that

can be sent over a single

persistent connection

(HTTP Keep-Alive)

before Tomcat closes the

connection

server.tomcat.threads.m

ax

FINERACT_SERVER_TO

MCAT_THREADS_MAX

200 The property sets the

maximum number of

threads that Tomcat can

use to process requests

server.tomcat.threads.m

in-spare

FINERACT_SERVER_TO

MCAT_THREADS_MIN_S

PARE

10 The property specifies

the minimum number

of spare (idle) threads

that Tomcat should

maintain

164

Kafka Properties

Table 8. Kafka related properties for Remote Spring Batch Jobs

Name Env Variable Default Value Description

fineract.remote-job-

message-

handler.kafka.enabled

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_ENABLED

false Enables or disables

Kafka for remote job

execution. If Kafka is

enabled then JMS shall

be disabled.

fineract.remote-job-

message-

handler.kafka.topic.auto

-create

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_TOPIC_AUTO_CRE

ATE

true Enables topic auto

creation. In case the

auto creation of the

topic is disabled please

make sure that the

replica and the partition

count is properly

configured.

fineract.remote-job-

message-

handler.kafka.topic.nam

e

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_TOPIC_NAME

job-topic Name of the topic where

partitioned tasks are

sent to

fineract.remote-job-

message-

handler.kafka.topic.repli

cas

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_TOPIC_REPLICAS

1 Number of the replicas

fineract.remote-job-

message-

handler.kafka.topic.part

itions

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_TOPIC_PARTITIO

NS

10 Number of partitions

fineract.remote-job-

message-

handler.kafka.bootstrap-

servers

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_BOOTSTRAP_SER

VERS

localhost:9092 Comma separated list of

bootstrap servers

fineract.remote-job-

message-

handler.kafka.consumer

.group-id

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_CONSUMER_GRO

UPID

fineract-consumer-

group-id

Group ID of the

Consumer

165

Name Env Variable Default Value Description

fineract.remote-job-

message-

handler.kafka.consumer

.extra-properties-key-

value-separator

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_CONSUMER_EXTR

A_PROPERTIES_SEPARA

TOR

= Defines key and value

separator for

consumer,e.g.:

key=value

fineract.remote-job-

message-

handler.kafka.consumer

.extra-properties-

separator

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_CONSUMER_EXTR

A_PROPERTIES_SEPARA

TOR

| Defines item separator

for consumer, e.g.:

key1=value1|key2=valu

e2

fineract.remote-job-

message-

handler.kafka.consumer

.extra-properties

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_CONSUMER_EXTR

A_PROPERTIES

#holds list of key value

pairs using the above

defined separators for

consumer:

key1=value1|key2=valu

e2|…|keyn=valuen

fineract.remote-job-

message-

handler.kafka.producer.

extra-properties-key-

value-separator

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_PRODUCER_EXTR

A_PROPERTIES_KEY_VA

LUE_SEPARATOR

= Defines key and value

separator for

producer,e.g.: key=value

fineract.remote-job-

message-

handler.kafka.producer.

extra-properties-

separator

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_PRODUCER_EXTR

A_PROPERTIES_SEPARA

TOR

| Defines item separator

for producer, e.g.:

key1=value1|key2=valu

e2

fineract.remote-job-

message-

handler.kafka.producer.

extra-properties

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_PRODUCER_EXTR

A_PROPERTIES

#holds list of key value

pairs using the above

defined separators for

producer:

key1=value1|key2=valu

e2|…|keyn=valuen

fineract.remote-job-

message-

handler.kafka.admin.ext

ra-properties-key-value-

separator

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_ADMIN_EXTRA_P

ROPERTIES_KEY_VALUE

_SEPARATOR

= Defines key and value

separator for admin,e.g.:

key=value

166

Name Env Variable Default Value Description

fineract.remote-job-

message-

handler.kafka.admin.ext

ra-properties-separator

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_ADMIN_EXTRA_P

ROPERTIES_SEPARATOR

| Defines item separator

for admin, e.g.:

key1=value1|key2=valu

e2

fineract.remote-job-

message-

handler.kafka.admin.ext

ra-properties

FINERACT_REMOTE_JOB

_MESSAGE_HANDLER_K

AFKA_ADMIN_EXTRA_P

ROPERTIES

#holds list of key value

pairs using the above

defined separators for

admin:

key1=value1|key2=valu

e2|…|keyn=valuen

Table 9. Kafka related Properties for External Events

Name Env Variable Default Value Description

fineract.events.external.

producer.kafka.enabled

FINERACT_EXTERNAL_E

VENTS_KAFKA_ENABLE

D

false Enables disables Kafka

for External Events. If

Kafka is enabled then

JMS shall be disabled.

fineract.events.external.

producer.kafka.timeout-

in-seconds

FINERACT_EXTERNAL_E

VENTS_KAFKA_TIMEOU

T_IN_SECONDS

10 Timeout for Kafka

confirming the

messages written in the

topic

fineract.events.external.

producer.kafka.topic.aut

o-create

FINERACT_EXTERNAL_E

VENTS_KAFKA_TOPIC_A

UTO_CREATE

true Enables topic auto

creation. In case the

auto creation of the

topic is disabled please

make sure that the

replica and the partition

count is properly

configured.

fineract.events.external.

producer.kafka.topic.na

me

FINERACT_EXTERNAL_E

VENTS_KAFKA_TOPIC_N

AME

external-events Name of the topic where

external events are sent

to

fineract.events.external.

producer.kafka.topic.rep

licas

FINERACT_EXTERNAL_E

VENTS_KAFKA_TOPIC_R

EPLICAS

1 Number of the replicas

fineract.events.external.

producer.kafka.topic.pa

rtitions

FINERACT_EXTERNAL_E

VENTS_KAFKA_TOPIC_P

ARTITIONS

10 Number of partitions

167

Name Env Variable Default Value Description

fineract.events.external.

producer.kafka.bootstra

p-servers

FINERACT_EXTERNAL_E

VENTS_KAFKA_BOOTST

RAP_SERVERS

localhost:9092 Comma separated list of

Kafka bootstrap servers

fineract.events.external.

producer.kafka.produce

r.extra-properties-

separator

FINERACT_EXTERNAL_E

VENTS_KAFKA_PRODUC

ER_EXTRA_PROPERTIES

_SEPARATOR

| Defines item separator

for producer,e.g.:

key=value

fineract.events.external.

producer.kafka.produce

r.extra-properties-key-

value-separator

FINERACT_EXTERNAL_E

VENTS_KAFKA_PRODUC

ER_EXTRA_PROPERTIES

_KEY_VALUE_SEPARAT

OR

= Defines key and value

separator for producer

client

fineract.events.external.

producer.kafka.produce

r.extra-properties

FINERACT_EXTERNAL_E

VENTS_KAFKA_PRODUC

ER_EXTRA_PROPERTIES

linger.ms=10|batch.size

=16384

Defines the extra

properties for external

event producer clients.

Optimization for

sending out large

volume of messages.

Increases Batch buffer

size and batching time

window.

fineract.events.external.

producer.kafka.admin.e

xtra-properties-

separator

FINERACT_EXTERNAL_E

VENTS_KAFKA_ADMIN_

EXTRA_PROPERTIES_SE

PARATOR

| Defines item separator

for admin client.

fineract.events.external.

producer.kafka.admin.e

xtra-properties-key-

value-separator

FINERACT_EXTERNAL_E

VENTS_KAFKA_ADMIN_

EXTRA_PROPERTIES_KE

Y_VALUE_SEPARATOR

= Defines key and value

separator for admin

client

fineract.events.external.

producer.kafka.admin.e

xtra-properties

FINERACT_EXTERNAL_E

VENTS_KAFKA_ADMIN_

EXTRA_PROPERTIES

Defines the extra

properties for external

event admin clients

Metrics Properties

For further understanding of the configurations properties related to metrics, refer to Springboot

metrics docs

Table 10. Metrics Properties

168

https://docs.spring.io/spring-boot/docs/2.0.5.RELEASE/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/2.0.5.RELEASE/reference/html/production-ready-metrics.html

Name Env Variable Default Value Description

management.info.git.mo

de

FULL Mode for displaying Git

information in the /info

endpoint.

management.endpoints.

web.exposure.include

FINERACT_MANAGEME

NT_ENDPOINT_WEB_EX

POSURE_INCLUDE

health,info,prometheus Comma-separated list of

endpoints that should be

exposed over the web.

management.tracing.en

abled

FINERACT_MANAGEME

NT_METRICS_TAGS_APP

LICATION

fineract Whether tracing is

enabled.

management.metrics.dis

tribution.percentiles-

histogram.http.server.re

quests

FINERACT_MANAGEME

NT_METRICS_DISTRIBU

TION_HTTP_SERVER_RE

QUESTS

false Whether to publish

percentile histograms

for HTTP server

requests.

management.otlp.metric

s.export.url

FINERACT_MANAGEME

NT_OLTP_METRICS_EXP

ORT_URL

tempo:4318/v1/traces URL to export OTLP

metrics.

management.otlp.metric

s.export.aggregationTe

mporality

FINERACT_MANAGEME

NT_OLTP_METRICS_EXP

ORT_AGGREGATION_TE

MPORALITY

cumulative Aggregation temporality

for OTLP metrics export.

management.promethe

us.metrics.export.enable

d

FINERACT_MANAGEME

NT_PROMETHEUS_ENA

BLED

false Whether to enable

Prometheus metrics

export.

spring.cloud.aws.cloudw

atch.enabled

FINERACT_MANAGEME

NT_CLOUDWATCH_ENA

BLED

false Whether to enable AWS

CloudWatch integration.

management.metrics.ex

port.cloudwatch.enable

d

FINERACT_MANAGEME

NT_CLOUDWATCH_ENA

BLED

false Whether to enable

CloudWatch metrics

export.

management.metrics.ex

port.cloudwatch.namesp

ace

FINERACT_MANAGEME

NT_CLOUDWATCH_NA

MESPACE

fineract Namespace for

CloudWatch metrics.

management.metrics.ex

port.cloudwatch.step

FINERACT_MANAGEME

NT_CLOUDWATCH_STEP

1m Step size for

CloudWatch metrics

export.

169

http://tempo:4318/v1/traces

AWS Configuration Properties

For further understanding of the configuration properties related to AWS, refer to Spring Cloud AWS

documentation.

Table 11. AWS Configuration Properties

Name Env Variable Default Value Description

spring.cloud.aws.endpoi

nt

FINERACT_AWS_ENDPO

INT

The AWS service

endpoint.

spring.cloud.aws.region.

static

FINERACT_AWS_REGIO

N_STATIC

us-east-1 The static region for

AWS services.

spring.cloud.aws.creden

tials.access-key

FINERACT_AWS_CREDE

NTIALS_ACCESS_KEY

The AWS access key.

spring.cloud.aws.creden

tials.secret-key

FINERACT_AWS_CREDE

NTIALS_SECRET_KEY

The AWS secret key.

spring.cloud.aws.creden

tials.instance-profile

FINERACT_AWS_CREDE

NTIALS_INSTANCE_PRO

FILE

false Whether to use the

instance profile for

credentials.

spring.cloud.aws.creden

tials.profile.name

FINERACT_AWS_CREDE

NTIALS_PROFILE_NAME

The name of the AWS

credentials profile.

spring.cloud.aws.creden

tials.profile.path

FINERACT_AWS_CREDE

NTIALS_PROFILE_PATH

The path to the AWS

credentials profile.

Resilience4j Properties

For a deeper understanding of resilience4j, refer to the Official website

Table 12. Resilience4j Properties

Name Env Variable Default Value Description

resilience4j.retry.instan

ces.executeCommand.m

ax-attempts

FINERACT_COMMAND_

PROCESSING_RETRY_M

AX_ATTEMPTS

3 The number of attempts

that resilience4j will

attempt to execute a

command after a failed

execution. Refer to org.

apache. fineract.

commands. service.

SynchronousCommandP

rocessingService#execut

eCommand for more

details

170

https://docs.awspring.io/spring-cloud-aws/docs/current/reference/html/index.html
https://docs.awspring.io/spring-cloud-aws/docs/current/reference/html/index.html
https://resilience4j.readme.io/docs/getting-started

Name Env Variable Default Value Description

resilience4j.retry.instan

ces.executeCommand.w

ait-duration

FINERACT_COMMAND_

PROCESSING_RETRY_W

AIT_DURATION

1s The fixed time value

that the retry instance

will wait before the next

attempt can be made to

execute a command

resilience4j.retry.instan

ces.executeCommand.en

able-exponential-

backoff

FINERACT_COMMAND_

PROCESSING_RETRY_EN

ABLE_EXPONENTIAL_B

ACKOFF

true If set to true, the wait-

duration will increase

exponentially between

each retry to execute a

command

resilience4j.retry.instan

ces.executeCommand.re

tryExceptions

FINERACT_COMMAND_

PROCESSING_RETRY_EX

PONENTIAL_BACKOFF_

MULTIPLIER

org.springframework.da

o.ConcurrencyFailureEx

ception,org.eclipse.persi

stence.exceptions.Optim

isticLockException,jakar

ta.persistence.Optimistic

LockException,org.sprin

gframework.orm.jpa.Jpa

OptimisticLockingFailur

eException,org.apache.fi

neract.infrastructure.co

re.exception.Idempotent

CommandProcessUnder

ProcessingException

This property specifies

the list of exceptions

that the execute

command retry instance

will retry on

resilience4j.retry.instan

ces.processJobDetailFor

Execution.max-attempts

FINERACT_PROCESS_JO

B_DETAIL_RETRY_MAX_

ATTEMPTS

3 The number of attempts

that resilience4j will

attempt to process job

details for execution.

Refer to

org.apache.fineract.infr

astructure.jobs.service.J

obRegisterServiceImpl#

processJobDetailForExe

cution for more details

resilience4j.retry.instan

ces.processJobDetailFor

Execution.wait-duration

FINERACT_PROCESS_JO

B_DETAIL_RETRY_WAIT

_DURATION

1s The fixed time value

that the retry instance

will wait before the next

attempt can be made

171

Name Env Variable Default Value Description

resilience4j.retry.instan

ces.processJobDetailFor

Execution.enable-

exponential-backoff

FINERACT_PROCESS_JO

B_DETAIL_RETRY_ENAB

LE_EXPONENTIAL_BAC

KOFF

true If set to true, the wait-

duration will increase

exponentially between

each retry to process job

detail

resilience4j.retry.instan

ces.processJobDetailFor

Execution.exponential-

backoff-multiplier

FINERACT_PROCESS_JO

B_DETAIL_RETRY_EXPO

NENTIAL_BACKOFF_MU

LTIPLIER

2 The multiplier for

exponential backoff, this

is useful only when

enable-exponential-

backoff is set to true

resilience4j.retry.instan

ces.recalculateInterest.

max-attempts

FINERACT_PROCESS_RE

CALCULATE_INTEREST_

RETRY_MAX_ATTEMPTS

3 The number of attempts

that resilience4j will

attempt to run

recalculate interest.

Refer to

org.apache.fineract.port

folio.loanaccount.servic

e.

LoanWritePlatformServi

ceJpaRepositoryImpl#re

calculateInterest for

more details

resilience4j.retry.instan

ces.recalculateInterest.

wait-duration

FINERACT_PROCESS_RE

CALCULATE_INTEREST_

RETRY_WAIT_DURATIO

N

1s The fixed time value

that the retry instance

will wait before the next

attempt can be made

resilience4j.retry.instan

ces.recalculateInterest.e

nable-exponential-

backoff

FINERACT_PROCESS_RE

CALCULATE_INTEREST_

RETRY_ENABLE_EXPON

ENTIAL_BACKOFF

true If set to true, the wait-

duration will increase

exponentially between

each retry to recalculate

interest

resilience4j.retry.instan

ces.recalculateInterest.e

xponential-backoff-

multiplier

FINERACT_PROCESS_RE

CALCULATE_INTEREST_

RETRY_EXPONENTIAL_

BACKOFF_MULTIPLIER

2 The multiplier for

exponential backoff, this

is useful only when

enable-exponential-

backoff is set to true

172

Name Env Variable Default Value Description

resilience4j.retry.instan

ces.recalculateInterest.r

etryException

FINERACT_PROCESS_RE

CALCULATE_INTEREST_

RETRY_EXCEPTIONS

org.springframework.da

o.ConcurrencyFailureEx

ception,org.eclipse.persi

stence.exceptions.Optim

isticLockException,jakar

ta.persistence.Optimistic

LockException,org.sprin

gframework.orm.jpa.Jpa

OptimisticLockingFailur

eException

This property specifies

the list of exceptions

that the

recalculateInterest retry

instance will retry on

resilience4j.retry.instan

ces.postInterest.max-

attempts

FINERACT_PROCESS_PO

ST_INTEREST_RETRY_M

AX_ATTEMPTS

3 The number of attempts

that resilience4j will

attempt to run post

interest. Refer to

org.apache.fineract.port

folio.loanaccount.servic

e.

LoanWritePlatformServi

ceJpaRepositoryImpl#po

stInterest for more

details

resilience4j.retry.instan

ces.postInterest.wait-

duration=

FINERACT_PROCESS_PO

ST_INTEREST_RETRY_W

AIT_DURATION

1s The fixed time value

that the retry instance

will wait before the next

attempt can be made

resilience4j.retry.instan

ces.postInterest.enable-

exponential-backoff

FINERACT_PROCESS_PO

ST_INTEREST_RETRY_E

NABLE_EXPONENTIAL_

BACKOFF

true If set to true, the wait-

duration will increase

exponentially between

each retry to post

interest

resilience4j.retry.instan

ces.postInterest.expone

ntial-backoff-multiplier

FINERACT_PROCESS_PO

ST_INTEREST_RETRY_EX

PONENTIAL_BACKOFF_

MULTIPLIER

2 The multiplier for

exponential backoff, this

is useful only when

enable-exponential-

backoff is set to true

173

Name Env Variable Default Value Description

resilience4j.retry.instan

ces.postInterest.retryExc

eptions

FINERACT_PROCESS_PO

ST_INTEREST_RETRY_EX

CEPTIONS

org.springframework.da

o.ConcurrencyFailureEx

ception,org.eclipse.persi

stence.exceptions.Optim

isticLockException,jakar

ta.persistence.Optimistic

LockException,org.sprin

gframework.orm.jpa.Jpa

OptimisticLockingFailur

eException

This property specifies

the list of exceptions

that the post interest

retry instance will retry

on

174

Appendix B: Third Party Software

TBD

175

	Fineract Platform Documentation
	Table of Contents
	License
	Preface
	Introduction
	Platform for Digital Financial Services
	About
	Contribute
	Downloads
	Resources

	Deployment
	Plugins
	HTTPS
	Docker Compose
	Application Server
	Fineract Instance types
	Kubernetes
	AWS
	Google Cloud
	Apache Software Foundation Infrastructure

	Architecture
	History
	Resources
	System Overview
	Functional Overview
	Principles
	Design Overview
	Persistence
	Idempotency
	Validation
	Batch execution and jobs
	Loan account locking
	Technology
	Modules
	Introducing Business Date into Fineract - Community version
	Reliable event framework
	Introducing Advanced payment allocation

	Fineract Development Environment
	Git
	GPG
	Docker
	Gradle
	IDE
	Kubernetes
	Tools

	Custom Modules
	Introduction
	Custom Services
	Custom Business Steps
	Custom Loan Transaction Processors
	Custom Batch Jobs
	Custom Database Migration
	Deploying Custom Modules
	Outlook

	Resilience
	Introduction Resilience
	Command
	Jobs
	Loan
	Savings

	Security
	OAuth

	Testing
	Cucumber
	Unit Testing
	Integration Testing

	Fineract Documentation Guide
	File and Folder Layout
	AsciiDoc
	Diagrams
	Editor
	Antora

	Releases
	Configuration
	Release Process
	Maintenance Release Process
	Publish Release Artifacts

	Fineract SDKs
	Generate Apache Fineract API Client

	Frequently Asked Questions
	Glossary
	Index
	Appendix A: Fineract Application Properties
	Tenant Database Properties
	Hikari Connection Pool Properties
	SSL Properties
	Authentication Properties
	Tomcat Properties
	Kafka Properties
	Metrics Properties
	AWS Configuration Properties
	Resilience4j Properties

	Appendix B: Third Party Software

